-
低杂波电流驱动(Lower Hybrid Current Drive)系统是托卡马克磁约束聚变装置非感应电流驱动、等离子体加热和改善等离子约束的一种重要技术。国际上很多磁约束聚变实验装置如JET[1]、JT-60[2]、Alcator C-Mod[3]、Tore Supra[4-5]、FTU[6] 、KSTAR[7]、SST-1[8]等都配备了MW量级LHCD系统,在国内主要聚变装置有EAST和HL-2A,HL-3装置[9],都配备有LHCD系统[10-11],并开展了实验研究。国内外主要装置的低杂波系统的微波源一般采用高功率速调管,HL-2A装置采用的是法国TED公司的TH2103A速调管,该速调管频率3.7 GHz,功率500 kW,脉宽210 s。该TH2103A型速调管研制于20世纪80年代,由于当时的供电技术阴极电源无法实现大电流的快速开启和关断,引入了阳极来实现束电流的快速关断[12-13],该系列速调管在以前的使用中都以这种供电方式使用,包含法国Tore Supra装置,英国JET装置和印度的SST装置。现在阴极电源已具有大电流的快速开启和关断功能[14-15],不再需要通过阳极来控制束电流。核工业西南物理研究院饶军、卢波等人发明了一种基于分压供电模式的新型供电方法[16],改阳极调制为阴极调制,即不再通过阳极调制来控制束电流,而是直接通过阴极高压的开启和关断来控制束电流。相对于传统的阳极调制器方法,避免了使用非线性的电真空四极管及其复杂反馈控制电路,从而简化了系统,降低了成本。基于分压供电模式的供电方法使得阳极电流会出现正向过流或反向过流现象,大电流流入或流出阳极对于速调管非常危险,会引起钛泵过流甚至损坏速调管。因此对阳极电流的测量和保护非常重要。
-
高功率速调管是一种微波放大电真空器件。为了保护高功率速调管的安全,在系统运行异常情况下,需快速切断束电流。TH2103A型速调管是基于阳极调制来控制束电流的。该速调管研制于20世纪80年代,当时电源技术水平无法快速关断数十安的束电流,为了解决这一问题,在阴极和地电位之间引入了阳极[17],一般使用基于电真空四极管的阳极调制器来提供阳极电压,如图1所示。由于电真空四极管为非线性器件,阳极调制器通常引入复杂的反馈控制系统来实现阳极电压稳定。当阳极电位与阴极电位相同时,在阳极和阴极之间没有加速电场,束电流截止。当阳极电位比阴极电位高且比地电位低时,阴极和阳极之间存在加速电场,从而形成束电流。阳极电位高低也可控制束电流大小。同时电子束被外加聚焦磁场约束[18],仅有很小一部分电子束轰击阳极形成阳极电流,阳极电流一般小于10 mA[19],从而实现小电流,高电压的快速开启和关断,进而实现高功率微波管束电流的快速保护功能。如图2所示为TH2103A型速调管的基本结构,阴极和阳极之间的脉冲高压从阴极吸取出电子并加速电子,电子束在磁体产生的磁场的作用下,穿过阳极和腔体,最后到达收集极。若在输入谐振腔施加射频激励源,选取合适的相位,可在中间腔体逐步放大电子束携带的微波能量。电子在通过输出腔的间隙时,被解调制和减速,使得电子束携带的微波能量向输出电路转移,最后经窗口输出。
-
分压供电模式即阳极电压由阴极高压分压而来,原理框图如图3所示,速调管阴极电压由总电阻115.6 kΩ的分压电阻排分压,经实验调试结果发现阳极对地电阻须小于40 kΩ速调管才能正常引出束流。阳极分压点和速调管阳极之间连接50 Ω取样电阻,通过测试50 Ω电阻两端电压来计算阳极电流的大小。对分压电阻和磁体电流调整后,当阳极对地电阻为30.4 kΩ、磁体三线圈电流为21.3 A,22 A,29 A,阴极高压为−60 kV时可以得到稳定的电参数,如图4a所示为等离子体放电炮号为05838的阳极电压Ua和阳极电流Ia数据波形。由于采用分压模式,阳极高压与阴极高压时序一致,无延时,因此阳极高压时序可代表阴极高压。阳极电流在阴极高压加入后约1 ms内出现200 mA以上瞬态过程,其原因是阴极发射的电子束轰击阳极后,通过阳极对地电阻迅速放电,该电流由阳极端电子流向分压排对地电阻,因此电流为正。随后阳极电压减小到分压排的分压值而进入稳态。稳态时阳极电流小于10 mA,阳极电压−15 kV,电流方向为流向阳极,持续时间约250 ms。
Figure 4. Discharge waveform in voltage division mode:a. Normal discharge b. anode reverse overcurrent c. anode forward overcurrent
由于高压改变、速调管长时间不使用真空发生变化或磁体电源输出电流波动等因素,即使电参数设置为调试好的电阻分压比、高压值和磁体电流值,速调管也会偶尔出现输出不稳定的现象[20],即速调管端阳极电流正向过流或反向过流,如图4(b)为等离子体放电炮号为37829的阳极电流反向过流波形,阳极电流持续5 ms小于−200 mA,图4(c)为等离子体放电炮号为38279的阳极电流正向过流波形,阳极电流持续5 ms大于200 mA。阳极电流过流代表有大量电子从阳极经过对地分压电阻流出或者流入阳极,对速调管的安全运行是有害的,因此需要对速调管的阳极电流进行测量和过流保护。
-
阳极电流测量是通过图3中对50 Ω取样电阻两端的电压的测量来测定,测到的电压值除以50 Ω即为阳极电流。由于50 Ω两端的电压悬浮在约-15 kV的阳极高压上,因此需要对阳极电流测量电路进行设计:(1)为了将高压与低压端采集和保护区隔离,电压测量采用了VF变换器,即将采集到的电压信号VF变换成光信号(发光频率代表电压值),通过光纤将代表电压信息的频率信号传输到低压采集区,在低压采集区通过FV变换将频率信号转换为电压信号,该电压信号除以50 Ω即为阳极电流Ia;(2)在VF变换器输入端,即50 Ω电阻处并联了5 kΩ和10 V双向导通限幅二极管,目的是防止Ia过大导致测量电压过大烧毁VF变换器,因此当被测电压大于10 V或小于−10 V时限幅二极管导通,因此能测量的最大Ia电流为±200 mA;(3)由于VF变换器电压输入端与阳极高压相连,因此VF变换器供电端也得悬浮在阳极高压上,具体措施为:将220 V交流电接入1∶1隔离变压器输入端,隔离变压器输出端为VF变换器供电,且隔离变压后的电压一端与阳极相连,即可将VF变换器供电电压悬浮在阳极高压上。如图5为Ia测量系统结构示意图,图6为实物图。
-
如前文所述分压供电模式阳极电流存在正向过流或反向过流的情况,大量电子流入或流出阳极会损坏速调管,因此需要对阳极电流进行过流保护。由于分压模式下速调管正常工作情况下阳极电流在阴极高压加入前1 ms均有200 mA以上的瞬态过程,因此阳极电流保护系统需要在阴极高压触发后1 ms以后启动对阳极电流过流保护。TH2103A速调管手册指出数毫秒内启动保护是安全的。我们将保护启动时间设定为5 ms。即阴极高压投入后5 ms再对阳极电流进行比较,FV变换电压值持续5 ms大于10 V或小于−10 V就输出一路光保护信号到综合保护箱,综合保护箱输出光信号关断阴极高压,整个保护过程在5 ms内完成。
图7为保护系统框图,保护系统包括VF变换器、FV变换器、前端探测器和综合保护箱。由于阳极电流测量悬浮在阳极高压上,VF和FV变换器主要用来做高压隔离。VF/FV变换器主要基于AD650芯片,该芯片将0~10 V电压转换成1 kHz~10 MHz的方波信号或将1 kHz~10 MHz的方波信号转换成0~10 V的电压。VF变换器中AD650芯片将0~10 V电压转换成1 kHz-10 MHz的方波信号,方波信号驱动光收发器HFBR1414,将电压信号转换成发光频率不同的光信号;光信号通过光纤传递给FV变换器;FV变换器中光信号通过光收发器HFBR2412转换成方波信号,AD650芯片再将方波信号转换成0~10 V的电压。该电压信号送到前端探测器,前端探测器将被测电压与预设电压进行比较,若被测信号持续5 ms大于10 V或小于-10 V则输出一路光信号到综合保护箱,综合保护箱收到保护信号后关断阴极高压。阳极电流过流时间超过5 ms关断阴极高压的电参数如图8所示,为等离子体放电炮号为05846的阳极电压Ua和阳极电流Ia数据波形,t1为高压投入时间1 030 ms,t2为保护计数时间1 035 ms,即当高压投入5 ms内对比被测电压与预设值,如判定为阳极过流则启动保护关断高压,t3为保护执行并切断高压的实际时间,为1 035.2 ms,保护执行过程约0.2 ms。若过流时间小于5 ms则不会启动保护,放电时长为中控预设置250 ms,如图4正常放电波形所示。
-
文章介绍了TH2103A型速调管一种新的供电模式-分压供电模式,并对该供电模式下速调管的阳极电流特性进行了分析,特点为在高压供电后有1 ms瞬态过程,且可能出现阳极电流正向过流或反向过流的不稳定状态,以及阳极电流约为0的正常放电状态。详细介绍了该供电模式下的阳极电流的测量电路,阳极电流测量电路主要解决如何对悬浮在−15 kV高压电上的电流进行测量,文章采取的隔离变压器供电,以及VF/FV变换器来隔离高压。介绍了该供电模式下的阳极电流的保护电路,保护电路针对阳极电流的瞬态过程设计了延时程序,在阴极高压启动后延迟5 ms判断阳极是否过流。该测试和保护电路应用在HL-2A装置的4只TH2103A速调管上,已稳定运行8 年,放电炮数上万炮,成功测量了阳极电流并在阳极过流时切断高压保护速调管,保证了8年间速调管的安全运行,对TH2103A型速调管的运行和维护具有关键意义。
System for Measuring and Protecting the Anode Current of TH2103A Klystron
doi: 10.16516/j.ceec.2024.3.16
- Received Date: 2024-04-30
- Accepted Date: 2024-05-14
- Rev Recd Date: 2024-05-13
- Available Online: 2024-05-30
- Publish Date: 2024-05-10
-
Key words:
- LHCD /
- klystron /
- anode current /
- measurement /
- protection
Abstract:
Citation: | CHEN Yali, LU Bo, BAI Xingyu, et al. System for measuring and protecting the anode current of TH2103A klystron [J]. Southern energy construction, 2024, 11(3): 146-151 doi: 10.16516/j.ceec.2024.3.16 |