• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 11 Issue 4
Jul.  2024
Turn off MathJax
Article Contents

ZHANG Dongqing, ZHANG Guohua, XU Lingling, et al. Development application and dynamic characteristics of synchronous condenser in electric power system [J]. Southern energy construction, 2024, 11(4): 31-41 doi:  10.16516/j.ceec.2024.4.04
Citation: ZHANG Dongqing, ZHANG Guohua, XU Lingling, et al. Development application and dynamic characteristics of synchronous condenser in electric power system [J]. Southern energy construction, 2024, 11(4): 31-41 doi:  10.16516/j.ceec.2024.4.04

Development Application and Dynamic Characteristics of Synchronous Condenser in Electric Power System

doi: 10.16516/j.ceec.2024.4.04
  • Received Date: 2023-08-28
  • Rev Recd Date: 2023-09-21
  • Available Online: 2024-07-12
  • Publish Date: 2024-07-31
  •   Introduction  With the establishment of the energy Internet architecture mainly relying on new energies, HVDC transmission has become an important way of power transmission, power grids present a new characteristic of "strong DC and weak AC". Synchronous condensers have unique advantages in dealing with the issue of "strong DC and weak AC" by virtue of their dynamic performance such as fast reactive power response and strong voltage support capability.   Method  To study the application of synchronous condensers in HVDC works, this paper summarized the development of synchronous condensers, introduced the current development status of several major types of synchronous condensers in China, such as synchronous condensers for transforming thermal power units, new-generation large-capacity synchronous condensers, distributed synchronous condensers, analyzed the working principle and dynamic characteristics of synchronous condensers. Then the paper summarized the virtues of synchronous condensers when compared with other reactive power compensation devices such as SVC, the application scenarios, existing configuration strategies of large-capacity synchronous condensers and distributed synchronous condensers.   Result  Finally, a simulation model of DC transmission system with synchronous condensers is built on the PSCAD/EMTDC platform. The simulation verify the suppression capability of synchronous condensers for commutation failure at the sending end and transient overvoltage at the receiving end caused by commutation failure, as well as the dynamic reactive power compensation capability under lagging phase operation.   Conclusion  The analysis shows that synchronous condensers have adequate suppression of transient overvoltage and commutation failure and their reactive power response speed and dynamic reactive power support capability will not be affected by lagging phase operation, which contributes to their prospect of engineering application for steady-state compensation in converter stations.
  • [1] 张振宇, 王文倬, 王智伟, 等. 跨区直流外送模式对新能源消纳的影响分析及应用 [J]. 电力系统自动化, 2019, 43(11): 174-180. DOI:  10.7500/AEPS20180808002.

    ZHANG Z Y, WANG W Z, WANG Z W, et al. Impact analysis and application of cross-region HVDC delivery mode in renewable energy accommodation [J]. Automation of electric power systems, 2019, 43(11): 174-180. DOI:  10.7500/AEPS20180808002.
    [2] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究 [J]. 中国电机工程学报, 2017, 37(1): 1-9. DOI:  10.13334/j.0258-8013.pcsee.162555.

    SHU Y B, ZHANG Z G, GUO J B, et al. Study on key factors and solution of renewable energy accommodation [J]. Proceedings of the CSEE, 2017, 37(1): 1-9. DOI:  10.13334/j.0258-8013.pcsee.162555.
    [3] 申安, 董剑敏, 李露阳. ±800 kV换流站造价结构及投资水平分析 [J]. 南方能源建设, 2020, 7(3): 119-124. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.016.

    SHEN A, DONG J M, LI L Y. Analysis on cost structure and investment level of ±800 kV converter stations [J]. Southern energy construction, 2020, 7(3): 119-124. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.016.
    [4] 谢惠藩, 李桂源, 徐光虎, 等. 大容量特高压多端混合直流实际运行关键特性分析 [J]. 南方电网技术, 2022, 16(2): 50-57. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.007.

    XIE H F, LI G Y, XU G H, et al. Analysis of key operation characteristics of high-capacity multi-terminal hybrid UHVDC [J]. Southern power system technology, 2022, 16(2): 50-57. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.007.
    [5] 徐春婷. 同步调相机对直流输电系统电压稳定性的影响研究 [D]. 哈尔滨: 哈尔滨理工大学, 2020. DOI:  10.27063/d.cnki.ghlgu.2020.000512.

    XU C T. Research on the influence of synchronous condenser on voltage stability of HVDC transmission system [D]. Harbin: Harbin University of Science and Technology, 2020. DOI:  10.27063/d.cnki.ghlgu.2020.000512.
    [6] 张冬清, 徐玲玲, 李彦龙, 等. 基于调相机的LCC-HVDC换流站无功优化与双层协调策略研究 [J]. 南方能源建设, 2023, 10(5): 24-33. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.004.

    ZHANG D Q, XU L L, LI Y L, et al. LCC-HVDC converter station reactive power optimization and two-layer coordination strategy research based on synchronous condenser [J]. Southern energy construction, 2023, 10(5): 24-33. DOI:  10.16516/j.gedi.issn2095-8676.2023.05.004.
    [7] 郭知非, 郑秀波, 姚文峰. 多直流馈入受端电网交直流相互影响分析框架 [J]. 南方能源建设, 2020, 7(1): 101-106. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.016.

    GUO Z F, ZHENG X B, YAO W F. AC/DC interaction analysis framework for load center power grids with multiple HVDC infeeds [J]. Southern energy construction, 2020, 7(1): 101-106. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.016.
    [8] 贺静波, 庄伟, 许涛, 等. 暂态过电压引起风电机组连锁脱网风险分析及对策 [J]. 电网技术, 2016, 40(6): 1839-1844. DOI:  10.13335/j.1000-3673.pst.2016.06.034.

    HE J B, ZHUANG W, XU T, et al. Study on cascading tripping risk of wind turbines caused by transient overvoltage and its countermeasures [J]. Power system technology, 2016, 40(6): 1839-1844. DOI:  10.13335/j.1000-3673.pst.2016.06.034.
    [9] 王峰, 刘天琪, 丁媛媛, 等. 直流闭锁引起的暂态过电压计算方法及其影响因素分析 [J]. 电网技术, 2016, 40(10): 3059-3065. DOI:  10.13335/j.1000-3673.pst.2016.10.019.

    WANG F, LIU T Q, DING Y Y, et al. Calculation method and influencing factors of transient overvoltage caused by HVDC block [J]. Power system technology, 2016, 40(10): 3059-3065. DOI:  10.13335/j.1000-3673.pst.2016.10.019.
    [10] 田一淳. 电网无功补偿技术研究现状分析 [J]. 通信电源技术, 2019, 36(5): 39-43. DOI:  10.19399/j.cnki.tpt.2019.05.013.

    TIAN Y C. Analysis of research status of reactive power compensation technology in power grid [J]. Telecom power technology, 2019, 36(5): 39-43. DOI:  10.19399/j.cnki.tpt.2019.05.013.
    [11] 张彦凯, 魏久升, 史玉杰. 新型同步调相机动态无功特性分析研究 [J]. 信息技术与网络安全, 2019, 38(1): 82-86. DOI:  10.19358/j.issn.2096-5133.2019.01.017.

    ZHANG Y K, WEI J S, SHI Y J. Analysis talk on dynamic reactive power characteristic of new type synchronous condense [J]. Information technology and network security, 2019, 38(1): 82-86. DOI:  10.19358/j.issn.2096-5133.2019.01.017.
    [12] 戴庆忠. 同步调相机特性及应用 [J]. 东方电气评论, 2016, 30(4): 47-51. DOI:  10.13661/j.cnki.issn1001-9006.2016.04.011.

    DAI Q Z. Extensive talk on synchronous condenser [J]. Dongfang electric review, 2016, 30(4): 47-51. DOI:  10.13661/j.cnki.issn1001-9006.2016.04.011.
    [13] 赵琪龙. 大直流弱送端系统的调相机关键参数及无功策略优化方案研究 [J]. 长春工程学院学报(自然科学版), 2018, 19(1): 35-39. DOI:  10.3969/j.issn.1009-8984.2018.01.009.

    ZHAO Q L. The study on key parameters and reactive power strategy optimization to a weak sending system in large direct current condenser [J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2018, 19(1): 35-39. DOI:  10.3969/j.issn.1009-8984.2018.01.009.
    [14] 郭一兵, 凌在汛, 崔一铂, 等. 特高压交直流系统动态无功支撑用大型调相机运行需求分析 [J]. 湖北电力, 2016, 40(5): 1-4, 34. DOI:  10.19308/j.hep.2016.05.001.

    GUO Y B, LING Z X, CUI Y B, et al. Characteristics analysis of large synchronous condenser for UHV DC project [J]. Hubei electric power, 2016, 40(5): 1-4, 34. DOI:  10.19308/j.hep.2016.05.001.
    [15] 赵一琰, 华文, 邓晖, 等. 调相机接入对浙江电网的影响研究 [J]. 浙江电力, 2018, 37(1): 8-12. DOI: 10.19585/j.zjdl.20180 1002.

    ZHAO Y Y, HUA W, DENG H, et al. Research on the impact of synchronous condenser on Zhejiang power grid [J]. Zhejiang electric power, 2018, 37(1): 8-12. DOI: 10.19585/j.zjdl.20180 1002.
    [16] 张开宇, 崔勇, 庄侃沁, 等. 加装同步调相机对多直流馈入受端电网的影响分析 [J]. 电力系统保护与控制, 2017, 45(22): 139-143. DOI:  10.7667/PSPC160632.

    ZHANG K Y, CUI Y, ZHUANG K Q, et al. Analysis of the influence of synchronous condensers on receiving-end grid with multi-infeed HVDC [J]. Power system protection and control, 2017, 45(22): 139-143. DOI:  10.7667/PSPC160632.
    [17] 阮羚, 王庆, 凌在汛, 等. 新型大容量调相机性能特点及工程应用 [J]. 中国电力, 2017, 50(12): 57-61. DOI:  10.11930/j.issn.1004-9649.201610028.

    RUAN L, WANG Q, LING Z X, et al. Study on the performance feature and key engineering application of new large capacity condenser [J]. Electric power, 2017, 50(12): 57-61. DOI:  10.11930/j.issn.1004-9649.201610028.
    [18] 蒋哲, 王安东, 田浩, 等. 基于新型电力系统的退役火电机组改调相机运行研究 [J]. 山东电力技术, 2022, 49(2): 17-22. DOI:  10.3969/j.issn.1007-9904.2022.02.004.

    JIANG Z, WANG A D, TIAN H, et al. Research on synchronous condenser reconstructed from retired thermal power unit in the new power system [J]. Shandong electric power, 2022, 49(2): 17-22. DOI:  10.3969/j.issn.1007-9904.2022.02.004.
    [19] 赵永正, 代海涛, 王安东, 等. 高压直流输电系统中调相机的启动与并网策略 [J]. 山东电力技术, 2017, 44(2): 20-22. DOI:  10.3969/j.issn.1007-9904.2017.02.005.

    ZHAO Y Z, DAI H T, WANG A D, et al. Start-up and grid-connection strategies of phase modifiers in HVDC system [J]. Shandong electric power, 2017, 44(2): 20-22. DOI:  10.3969/j.issn.1007-9904.2017.02.005.
    [20] 李志强, 种芝艺, 黄金军. 快速动态响应同步调相机动态无功特性试验验证 [J]. 中国电机工程学报, 2019, 39(23): 6877-6885. DOI:  10.13334/j.0258-8013.pcsee.190972.

    LI Z Q, ZHONG Z Y, HUANG J J. Test verification of dynamic reactive power characteristics of fast dynamic response synchronous condenser [J]. Proceedings of the CSEE, 2019, 39(23): 6877-6885. DOI:  10.13334/j.0258-8013.pcsee.190972.
    [21] 李锴, 邵德军, 徐友平, 等. 基于新一代调相机的多目标无功电压协调控制系统研究 [J]. 电网技术, 2019, 43(8): 2961-2967. DOI:  10.13335/j.1000-3673.pst.2018.1626.

    LI K, SHAO D J, XU Y P, et al. Research on coordinated multi-objective reactive voltage control system based on new type synchronous condenser [J]. Power system technology, 2019, 43(8): 2961-2967. DOI:  10.13335/j.1000-3673.pst.2018.1626.
    [22] 王雅婷, 张一驰, 周勤勇, 等. 新一代大容量调相机在电网中的应用研究 [J]. 电网技术, 2017, 41(1): 22-28. DOI:  10.13335/j.1000-3673.pst.2016.0715.

    WANG Y T, ZHANG Y C, ZHOU Q Y, et al. Study on application of new generation large capacity synchronous condenser in power grid [J]. Power system technology, 2017, 41(1): 22-28. DOI:  10.13335/j.1000-3673.pst.2016.0715.
    [23] 王梦玲, 陈刚, 张超峰, 等. 新一代大容量调相机在电网中的应用 [J]. 电工技术, 2020(8): 52-53, 56. DOI:  10.19768/j.cnki.dgjs.2020.08.021.

    WANG M L, CHEN G, ZHANG C F, et al. Application of a new generation of large capacity synchronous condenser in power grid [J]. Electric engineering, 2020(8): 52-53, 56. DOI:  10.19768/j.cnki.dgjs.2020.08.021.
    [24] 李兆伟, 吴雪莲, 曹路, 等. 抑制直流连续换相失败的调相机紧急控制 [J]. 电力系统自动化, 2018, 42(22): 91-97. DOI:  10.7500/AEPS20170726005.

    LI Z W, WU X L, CAO L, et al. Emergency control of synchronous condenser to suppress DC continuous commutation failure [J]. Automation of electric power systems, 2018, 42(22): 91-97. DOI:  10.7500/AEPS20170726005.
    [25] 陈卉, 刘颖, 赵龙生. 楼宇型天然气分布式能源系统的典型案例分析 [J]. 南方能源建设, 2021, 8(1): 25-30. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.003.

    CHEN H, LIU Y, ZHAO L S. Typical case analysis of the building-type CCHP system [J]. Southern energy construction, 2021, 8(1): 25-30. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.003.
    [26] 曹炜, 张甜, 傅业盛, 等. 同步调相机增强电力系统惯性和改善频率响应的研究与应用 [J]. 电力系统自动化, 2020, 44(3): 1-10. DOI: 10.7500/AEPS 20190429015.

    CAO W, ZHANG T, FU Y S, et al. Research and application for increasing inertia and improving frequency response of power system by using synchronous condenser [J]. Automation of electric power systems, 2020, 44(3): 1-10. DOI: 10.7500/AEPS 20190429015.
    [27] 刘炳辰. 高比例新能源送出系统动态无功补偿方案研究 [D]. 北京: 华北电力大学(北京), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.001240.

    LIU B C. Dynamic reactive power compensation scheme of high proportion new energy transmission system [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.001240.
    [28] 赵溶溶, 柯德平, 孙元章, 等. 考虑直流闭锁暂态过电压约束的送端电网换流站高效无功规划 [J]. 南方电网技术, 2022, 16(7): 10-21. DOI:  10.13648/j.cnki.issn1674-0629.2022.07.002.

    ZHAO R R, KE D P, SUN Y Z, et al. Efficient reactive power planning of converter station in HVDC sending system considering HVDC blocking transient overvoltage constraint [J]. Southern power system technology, 2022, 16(7): 10-21. DOI:  10.13648/j.cnki.issn1674-0629.2022.07.002.
    [29] 赫英明. 弱送端HVDC系统中同步调相机的性能分析 [D]. 哈尔滨: 哈尔滨理工大学, 2019. DOI:  10.27063/d.cnki.ghlgu.2019.000032.

    HE Y M. Analysis of performance of synchronous condenser in weak sending system in HVDC [D]. Harbin: Harbin University of Science and Technology, 2019. DOI:  10.27063/d.cnki.ghlgu.2019.000032.
    [30] 王庆, 沙江波, 杨鹏程, 等. 同步调相机对LCC-HVDC换相失败抵御能力的影响研究 [J]. 电工电能新技术, 2018, 37(5): 29-36. DOI:  10.12067/ATEEE1801046.

    WANG Q, SHA J B, YANG P C, et al. Study of impact of SC on ability to defend commutation failure of LCC-HVDC [J]. Advanced technology of electrical engineering and energy, 2018, 37(5): 29-36. DOI:  10.12067/ATEEE1801046.
    [31] 李东升. 应用于直流受端多馈入系统的同步调相机优化配置研究 [D]. 北京: 北京交通大学, 2022. DOI:  10.26944/d.cnki.gbfju.2022.002100.

    LI D S. Research on the optimized configuration of synchronous condenser for HVDC receiver multi-infeed system [D]. Beijing: Beijing Jiaotong University, 2022. DOI:  10.26944/d.cnki.gbfju.2022.002100.
    [32] 赵梦阳. 抑制直流扰动下风电场暂态过电压的调相机配置方法研究 [D]. 南京: 南京师范大学, 2021. DOI:  10.27245/d.cnki.gnjsu.2021.000779.

    ZHAO M Y. Study on the configuration method of phase modulator to suppress the transient overvoltage of wind farm under DC disturbance [D]. Nanjing: Nanjing Normal University, 2021. DOI:  10.27245/d.cnki.gnjsu.2021.000779.
    [33] 赵学明. 换相失败对含风电场的交直流混联系统过电压影响的研究 [D]. 天津: 天津大学, 2018. DOI:  10.27356/d.cnki.gtjdu.2018.000794.

    ZHAO X M. Study on the influence of commutation failure on the overvoltage of AC/DC hybrid power system with wind farms [D]. Tianjin: Tianjin University, 2018. DOI:  10.27356/d.cnki.gtjdu.2018.000794.
    [34] 陈波, 熊华强, 舒展, 等. 含同步调相机的直流换流站稳态无功协调控制策略 [J]. 电力自动化设备, 2020, 40(11): 156-164. DOI:  10.16081/j.epae.202009009.

    CHEN B, XIONG H Q, SHU Z, et al. Steady-state reactive power coordinated control strategy for DC converter station with synchronous condenser [J]. Electric power automation equipment, 2020, 40(11): 156-164. DOI:  10.16081/j.epae.202009009.
    [35] 窦宇宇, 林楠, 任正, 等. 风电机组大扰动暂态过电压机理分析及优化抑制 [J]. 山东电力技术, 2023, 50(5): 28-33, 82. DOI:  10.20097/j.cnki.issn1007-9904.2023.05.005.

    DOU Y Y, LIN N, REN Z, et al. Mechanism analysis and optimization suppression strategy of large disturbance transient overvoltage of wind turbine [J]. Shandong electric power, 2023, 50(5): 28-33, 82. DOI:  10.20097/j.cnki.issn1007-9904.2023.05.005.
    [36] 甘王伟, 陈道君, 崔挺, 等. 分布式调相机在特高压交直流混联电网的配置研究 [J]. 湖南电力, 2022, 42(3): 35-42, 72. DOI:  10.3969/j.issn.1008-0198.2022.03.007.

    GAN W W, CHEN D J, CUI T, et al. Research on configuration of distributed synchronous condenser in UHV AC/DC hybrid power grid [J]. Hunan electric power, 2022, 42(3): 35-42, 72. DOI:  10.3969/j.issn.1008-0198.2022.03.007.
    [37] 索之闻, 李晖, 张锋, 等. 高比例新能源直流送端系统分布式调相机优化配置 [J]. 电力系统保护与控制, 2022, 50(23): 133-141. DOI:  10.19783/j.cnki.pspc.220250.

    SUO Z W, LI H, ZHANG F, et al. Optimal configuration of a distributed synchronous condenser for an HVDC sending-end system with a high-proportion of renewable energy [J]. Power system protection and control, 2022, 50(23): 133-141. DOI:  10.19783/j.cnki.pspc.220250.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(8)

Article Metrics

Article views(317) PDF downloads(47) Cited by()

Related

Development Application and Dynamic Characteristics of Synchronous Condenser in Electric Power System

doi: 10.16516/j.ceec.2024.4.04

Abstract:   Introduction  With the establishment of the energy Internet architecture mainly relying on new energies, HVDC transmission has become an important way of power transmission, power grids present a new characteristic of "strong DC and weak AC". Synchronous condensers have unique advantages in dealing with the issue of "strong DC and weak AC" by virtue of their dynamic performance such as fast reactive power response and strong voltage support capability.   Method  To study the application of synchronous condensers in HVDC works, this paper summarized the development of synchronous condensers, introduced the current development status of several major types of synchronous condensers in China, such as synchronous condensers for transforming thermal power units, new-generation large-capacity synchronous condensers, distributed synchronous condensers, analyzed the working principle and dynamic characteristics of synchronous condensers. Then the paper summarized the virtues of synchronous condensers when compared with other reactive power compensation devices such as SVC, the application scenarios, existing configuration strategies of large-capacity synchronous condensers and distributed synchronous condensers.   Result  Finally, a simulation model of DC transmission system with synchronous condensers is built on the PSCAD/EMTDC platform. The simulation verify the suppression capability of synchronous condensers for commutation failure at the sending end and transient overvoltage at the receiving end caused by commutation failure, as well as the dynamic reactive power compensation capability under lagging phase operation.   Conclusion  The analysis shows that synchronous condensers have adequate suppression of transient overvoltage and commutation failure and their reactive power response speed and dynamic reactive power support capability will not be affected by lagging phase operation, which contributes to their prospect of engineering application for steady-state compensation in converter stations.

ZHANG Dongqing, ZHANG Guohua, XU Lingling, et al. Development application and dynamic characteristics of synchronous condenser in electric power system [J]. Southern energy construction, 2024, 11(4): 31-41 doi:  10.16516/j.ceec.2024.4.04
Citation: ZHANG Dongqing, ZHANG Guohua, XU Lingling, et al. Development application and dynamic characteristics of synchronous condenser in electric power system [J]. Southern energy construction, 2024, 11(4): 31-41 doi:  10.16516/j.ceec.2024.4.04
    • 随着化石能源日益匮乏和环境恶化问题的不断凸显,新能源逐步成为能源互联网架构的主体[1-2],而我国陆上新能源发电集中于西北、华北、东北的三北地区,电力系统实施“西电东送、南北互供、全国联网”的发展战略,以破解资源和负荷在地理上的逆向分布困局[3-4]。特高压直流输电技术凭借其输送容量大、输电距离远等独特优势成为电力输送的重要方式。但随之而来的“强直弱交”问题给电网安全稳定运行带来极大危害,换流站安全稳定换相是高压直流系统安全稳定运行的重要一环,额定状态下,整流器所需的无功功率占比约为直流传输有功功率的30%~50%,逆变器所需的无功功率约为直流传输有功功率的40%~60%[5-6],无功不足可导致直流受端母线电压降低,引发换相失败,继而送端母线发生暂态过电压,可能使近区新能源场站因高电压穿越失败而大面积脱网,威胁送端交流系统的安全性和供电可靠性[7-9]

      同步调相机具有良好的动态特性,无功增益大、响应速度快、受交流母线电压影响小,是高压直流输电系统中理想的无功补偿设备[10-11]。本文梳理了调相机的发展应用与现状,分析了同步调相机的动态特性与工作原理,就大容量调相机与分布式调相机不同的适用场景与现有配置策略进行归纳整理,分析了调相机抑制换相失败后产生的过电压的机理、滞相运行下的动态特性,并进行仿真验证。

    • 20世纪初,美国开始研制并开发出多台小容量氢冷调相机。20世纪40~50年代,日本、瑞典、前苏联等国家先后研制出了一批容量为37.5~80 Mvar的调相机,并在此基础上进行了大量应用。在20世纪70~80年代,国外相继研制出了345 Mvar全水冷式和250 Mvar、320 Mvar氢冷调相机。我国直到20世纪中叶,才设计制造了30 Mvar及以下空冷、50 Mvar蒸发冷却和60 Mvar氢冷调相机,并对120 Mvar和250 Mvar的大容量调相机进行了改造[12]。在20世纪90年代以前,同步调相机曾在中国的电力系统中有过一定程度的使用。随着厂网分家以及SVC和SVG等静态无功补偿设备的崛起和发展,调相机曾因国网系统缺少一支专业的旋转设备维护团队一度被逐渐淘汰并替代。

      近几年,随着大容量、长距离特高压直流输电技术的普及,“强直弱交”问题日益凸显,对无功补偿提出了更高的要求。调相机因其相对于其它无功补偿设备所具有的优越性,在近几年又一次成为人们关注的焦点[13-15]。调相机具有受电网电压影响小、能短时强励、可长期工作等特点而被广泛应用于许多国家。瑞典、加拿大、巴西、埃及、阿根廷等国都在大规模水电基地远距离外送的受端变电站加装调相机,法国和日本则为防止电压失稳崩溃事故,在电网中加装调相机[16]

    • 2015年9月,国家电网公司立项了大容量新型调相机项目[17],2017年开始,国内就新能源场站配置分布式调相机的技术方案开展研究,目前,国内主要投运的调相机包括退役火电机组改造而成的调相机,新一代大容量调相机和分布式调相机。

    • 同步调相机造价昂贵,随着以风电、光伏为主的新能源电网建设,传统火电机组面临提前退役的问题,将退役火电机组改为调相机运行不仅可以提高退役火电机组的利用效率,还具有较大经济性。

      与常规汽轮发电机相比,调相机对暂态电气参数和定转子电流过载能力要求较高,通过发电机改造而成的调相机需降容使用。为提高暂态响应速度,调相机出口升压变压器的短路阻抗(标幺值低于12%)比发电机出口升压变压器的短路阻抗小(标幺值约为14%)[18]。对于启动系统,由于调相机是同步电动机,不具备自启动能力[19],须增添启动设备将其拖动到额定转速并网。对于辅助系统,改为调相机后,发电机变为电动机运行,分散控制系统、继电保护均须做适应性改造。

    • 传统调相机组已于2015年全部退出运行[20],新一代大容量调相机伴随我国电力系统架构和运行特性的变化应运而生,国网公司对新一代大容量调相机提出了“暂动态特性优、安全可靠性高、运行维护方便”的3点基本要求。相比传统调相机,新一代大容量调相机在容量、内部设计与性能上均进行了优化改进。目前我国制造的新一代大容量调相机单机容量可达300 Mvar,其进相运行能力可达200 Mvar,有效降低了单位造价;内冷却系统由传统的氢冷方式改为全空冷或双水内冷方式,运行维护量大大减少;直轴次暂态电抗的设计值优化至原设计值的60%,同工况下,新一代大容量调相机在次暂态过程中的瞬时无功输出能力的提升幅度超过50%,转子在2.5倍强励下可持续运行15 s,此外,在强励开始的前5 s内,强励达到3.5倍以满足强励速度要求[21-23],经过一系列的优化设计,新一代大容量调相机具备了在0.65 s内将无功出力从300 Mvar提升至840 Mvar的能力[24]

      新一代大容量调相机能够全面提升系统动态无功储备,因其具有暂态响应速度快,在故障瞬间的电压支撑能力强,具有良好的过载能力等优点,在特高压直流换流站配套大容量新型调相机的方案已获得行业普遍认同,国网公司已在18个换流站将47台调相机投入运行。同时,为进一步提高调相机配置的经济性,增强特高压换流站的无功调节能力,国网公司联合哈电、上电等电机制造商开始了大容量快速响应调相机的研究,目前上电已经具备600 Mvar双水内冷调相机的设计制造能力,东电和哈电也有600 Mvar调相机的设计方案。

    • 中国电科院、国网公司等已就新能源场站配置分布式调相机的技术方案开展研究,并结合青海南-驻马店特高压直流新能源送出问题论证了分布式调相机的必要性。分布式调相机具有良好的提升电压和惯量支撑能力,是解决高比例新能源电力系统的稳定运行和新能源大规模消纳的主要技术方案。2022年,青海建成投运包含21台由我国自主研发的50 Mvar新能源分布式调相机群,是世界第1个、也是截至目前新能源分布式调相机群中规模最大的[25]。此外,内蒙兴安盟也配置了一定数量的分布式调相机。造价昂贵和运维困难是当前限制分布式调相机大规模工程应用的主要因素,为突破这些限制,集成化、模块化是分布式调相机未来的发展方向。

    • 同步调相机没有原动机,只承载无功负荷,本质上是1种空载运行用于向系统提供或吸收无功功率,改善功率因数的同步电动机,通过改变励磁电流的大小对无功功率进行调控。同步调相机的运行过程分为过励磁和欠励磁2种状态。在正常运行情况时,机端电压U和定子电流I之间存在90°相位差,在过励磁运行时,定子电流I相位超前机端电压U,调相机表现为电容器,将感性无功功率提供给系统,以增加系统电压;在欠励磁运行时,机端电压U相位超前定子电流I,调相机表现为电感器,从系统吸取感性无功功率,使系统电压下降。

      d-q-0坐标系下,调相机无功功率表达式为:

      $$ {Q_{{\mathrm{SC}}}} = {U_{{q}}} \times {I_{{d}}} $$ (1)

      式中:

      Uq ——调相机机端电压的q轴分量(kV);

      Id ——调相机定子电流的d轴分量(kA)。

      图1为调相机次暂态等值模型,$ E_q^{''} $为调相机q轴次暂态电动势,$ X_d^{''} $为d轴次暂态电抗,$ X_{\mathrm{T}} $为调相机升压变电抗。

      Figure 1.  Sub-transient equivalent model of synchronous condenser

      根据等值模型,可得Id为:

      $$ {I_{{d}}} = \dfrac{{E_{{q}}^{''} - {U_{{q}}}}}{{{{X}}_{{d}}^{''} + {{{X}}_{{{\mathrm{T}}}}}}} $$ (2)

      将式(2)带入式(1),得在次暂态模型下,故障前调相机出力计算公式:

      $$ {Q_{{\text{SC}}}} = \dfrac{{{U_{{q}}}(E_{{q}}^{''} - {U_{{q}}})}}{{{{X}}_{{d}}^{''} + {{{X}}_{\text{T}}}}} $$ (3)

      当交流系统发生故障,出现过电压时,设过电压为Um,将其近似为调相机机端电压,此时调相机出力:

      $$ Q_{{\text{SC}}}^{''} = \dfrac{{{U_{{q}}}(E_{{q}}^{''} - {U_{{{\mathrm{m}}}}})}}{{{{X}}_{{d}}^{''} + {{{X}}_{\text{T}}}}} $$ (4)

      由式(3)、式(4)可得,故障下调相机无功功率变化量$ \Delta Q_{{\mathrm{SC}}} $:

      $$ \Delta {Q}_{\text{SC}}={Q}_{\text{SC}}\text-{Q}_{\text{SC}}^{''}\text=\dfrac{{U}_{m}^{2}-{U}_{q}^{2}+{E}_{q}^{''}({U}_{m}-{U}_{q})}{{{X}}_{d}^{''}+{{X}}_{\text{T}}} $$ (5)
    • 故障过程可以分为3个阶段:第一阶段是次暂态阶段,此时电流幅值急速下降,持续时间很短;第二阶段是暂态阶段,此时电流在较长时间段内逐渐衰减;第三阶段是稳态阶段,此时电流维持恒定。在三相短路基础上对故障时短路电流变化的物理过程进行分析总结如下:在短路瞬间,转子上呈感性的阻尼绕组D和励磁绕组f抑制了电流变化和磁通传入,使得电枢反应磁通走阻尼绕组D和励磁绕组f的漏磁路径,磁导率低,相应的定子回路等值电抗较低而电流较大,这种状态被称为次暂态状态。图2展示出对应于该状态的等效电路。

      Figure 2.  Equivalent circuit of direct-axis sub-transient reactance $ X_d^{''} $

      由于阻尼绕组D和励磁绕组f均有电阻,阻尼绕组的感生电流和励磁绕组的感应电流均衰减,在降低到一定程度后,直轴电枢反应磁通先穿入阻尼绕组,励磁绕组的感生电流仍可抑制电枢反应磁通通过。此时定子等值电抗有所增加,定子电流较小,此状态称为暂态状态。对应的等效电路如图3所示。

      Figure 3.  Equivalent circuit of direct-axis transient reactance $ X_d^{'} $

      在此之后,电枢反应磁通将在阻尼绕组的感应电流衰减到0时全部穿入直轴,磁导达到最大,进入稳态运行状态,对应的定子电抗为Xd,定子电流为稳态值。Xd对应的等效电路如图4所示。

      Figure 4.  Equivalent circuit of direct-axis - steady-state reactance $ {X_d} $

      按照叠加原理和原始Park方程,推导出不计自动调节励磁装置励磁系统条件下机端短路时的定子电流表达式idiq如下:

      $$ \begin{array}{c}{i}_{d}=\dfrac{{E}_{{\rm{q}}\left|0\right|}}{{{X}}_{{{d}}}}+[(\dfrac{1}{{\text{X}}_{{{d}}}^{''}}-\dfrac{1}{{{X}}_{{{d}}}^{'}})\mathrm{cos}{\delta }_{{\rm{g}}}{e}^{-\dfrac{t}{{T''}_{{{d}}}}}+(\dfrac{1}{{{X'}}_{{{d}}}}\\ -\dfrac{1}{{{X}}_{{{d}}}})\mathrm{cos}{\delta }_{{\rm{g}}}{e}^{-\dfrac{t}{{T}_{d}^{'}}}-\dfrac{1}{{{X}}_{{{d}}}^{''}}{e}^{-\dfrac{t}{{T}_{{\rm{a}}}}}\mathrm{cos}(\omega t+{\delta }_{{\rm{g}}})]{U}_{\left|0\right|}\end{array} $$ (6)
      $$ \begin{array}{c}{i}_{q}=-{U}_{\left|0\right|}(\dfrac{1}{{{X}}_{{{q}}}^{''}}-\dfrac{1}{{{X}}_{{{q}}}^{}})\mathrm{sin}{\delta }_{{\rm{g}}}{e}^{-\dfrac{t}{{T}_{{{q}}}^{''}}}+\\ \dfrac{{U}_{\left|0\right|}}{{{X}}_{{{q}}}^{''}}\mathrm{sin}(\omega t+{\delta }_{{\rm{g}}}){e}^{-\tfrac{t}{{T}_{{\rm{a}}}}}\end{array} $$ (7)

      式中:

      $ {E}_{{\mathrm{q}}\left|0\right|} $ ——励磁电流的空载电动势的有效值(kV);

      $ {X}_{d} $ ——d轴稳态电抗(Ω);

      $ {{X}}_{d}^{''} $ ——d轴次暂态电抗(Ω);

      $ {X}_{d}^{'} $ —— d轴暂态电抗(Ω);

      $ {\delta }_{{\mathrm{g}}} $ ——短路前调相机功角(°);

      $ {T''}_{d} $ ——d轴次暂态短路时间常数(s);

      $ {T'}_{d} $ ——d轴暂态短路时间常数(s);

      $ {T}_{a} $ ——定子绕组次暂态的时间常数(s);

      $ \omega $ ——调相机电角速度(rad/s);

      $ {U_{|0|}} $ ——短路前机端电压(kV);

      $ {X}_{q}^{''} $ ——q轴次暂态电抗(Ω);

      $ {X}_{q} $ ——q轴稳态电抗(Ω)。

    • 调相机作为直流输送中理想的无功补偿设备,根据配置位置和容量的不同,分为大容量调相机和分布式调相机。大容量调相机容量可达300 Mvar,通常配置在直流换流站或近区,在送端主要起抑制换流站过电压的作用,在受端主要作用是抑制受端交流母线低电压。分布式调相机容量较小,目前主要有10 Mvar、20 Mvar、50 Mvar几种容量设计,通常配置在新能源场站,用以抑制新能源机端暂态过电压,防止新能源过电压脱网[26]

      就现有的无功补偿装置而言,SVC和SVG无功补偿装置受其工作原理限制,其配置容量只占新能源厂站额定功率的20%~25%,并且过载能力很弱[27],在发生故障时难以给系统提供足够的动态无功支撑,其中SVC无功输出能力与接入点电压的平方成正比,而SVG无功输出与接入点电压成正比,并且无法在三相严重不平衡的情况下正常工作[28]。调相机作为旋转设备,不仅具有良好的无功输出特性,还在改善直流受端暂态低电压、抑制直流送端暂态过电压、降低直流受端换相失败概率、利用强励提高系统稳定性等方面有其独特优势。大容量调相机与分布式调相机可以综合配置,相互支撑,能够大幅提升新能源送出水平。另外,大容量调相机本质上作为空载运行的大型同步电动机,可以为高比例新能源送端系统提供一定的转动惯量支撑和短路容量[29]

    • 高压直流受端多建在负荷中心,通常存在多馈入现象,直流受端在故障时主要问题为无功支撑不足,面临低电压问题。当电压大幅跌落,就可能导致换相失败的发生。调相机具备次暂态特性,在故障发生瞬间调相机内电势保持不变,并能迅速吸收或输出大量无功功率。在直流受端加装调相机可以瞬时发出大量无功功率从而支撑电网电压。对于多直流馈入电网,直流受端加装调相机还可减少多回直流同时换相失败的几率,提升电网的安全性稳定性。

      文献[30]分析了LCC-HVDC换相失败的机理和同步调相机提高LCC-HVDC换相失败抵御能力的机理,表明同步调相机对于LCC-HVDC换相失败情况具有显著抑制作用。文献[31]在调相机对多馈入直流的优化基础上,提出了如图5的多馈入直流系统中调相机的选址方法,该方法能够提升调相机对于换相失败的抑制效果。

      Figure 5.  Process of selecting access node for synchronous condenser in MIDC

      高压直流送端大多建在新能源集中地区,系统较弱,换相失败、直流闭锁、近区交流故障都将引起送端过电压。虽然上述故障下暂态过电压的产生机理不尽相同,但调相机可以凭借其良好的进相运行能力,瞬时吸收大量无功,抑制暂态过电压,对于新能源外送的直流送端,加装调相机可以有效防止新能源大规模脱网,并提高新能源在直流系统中的输送比例。

      文献[32]以降低直流近区新能源暂态过电压为目标,提出1种调相机的动态无功布点方法。文献[33]分析了调相机对暂态过电压的抑制作用,提出了调相机的容量选取原则与补偿前后过电压幅值大小、额定直流传输功率、送端短路比有关,并提出调相机投入最优容量的计算公式,如式(8)所示:

      $$ {Q}_{{\rm{tc}}}=-\dfrac{{\mathrm{SCR}}·{P}_{{\rm{dN}}}·\Delta U}{3k} $$ (8)

      式中:

      SCR ——送端交流系统短路比;

      PdN ——额定直流传输功率(MW);

      ΔU ——送端交流母线电压变化量(kV);

      k ——调相机欠励运行容量与额定容量之比。

      上述分析主要是利用调相机良好的动态特性来保持电力系统的安全稳定,为提高调相机的利用率,提高换流站运行经济性,一些研究尝试让换流站内调相机参与稳态无功补偿,文献[34]提出了1种同步调相机滞相运行,使直流换流站滤波电容欠补偿的协调控制策略,该策略可以减少滤波电容投入组数,并一定程度上减少交流电压下降后换流站的无功缺额。

    • 新能源并网点与换流站间电气距离较远,大容量调相机通常安装在换流站及其近区,不足以抑制新能源机端的暂态过电压。而分布式调相机可以分层分散配置,在防止新能源过电压脱网和提高新能源送出能力上具有良好效果。分布式调相机的在工作原理上与大容量调相机相同,在设计制造上通常采用纯空冷方案,相比于大容量调相机,分布式调相机的相关设计参数均实现了一定优化,具有更好的动态特性,其故障下瞬时强励能力可达3.5倍以上,并具有与额定容量相等的进相运行能力[35]。文献[36]研究了总容量相同的分布式调相机与大容量调相机对电网的电压支撑能力,从仿真上验证了分布式调相机的投运优势;文献[37]分析了高比例新能源直流送端暂态过电压的传播特性,建立了分布式调相机优化配置模型,一定程度上提高了分布式调相机配置和运行的经济性。

    • 验证受端调相机对换相失败的抑制作用。根据实际经验,一般取晶闸管最小熄弧角γmin=7°,当γ<7°时,即发生换相失败[34],在PSCAD中搭建直流送出模型进行仿真验证。送端系统包含发电机、同步调相机,经高压直流系统送出,当直流系统输送容量为2 GW时,认为受端是无穷大系统。在受端母线处设置单相接地、三相短路故障,切除时间均设为0.1 s,对比不同故障下逆变侧晶闸管熄弧角γ在有无调相机情况下的变化,图6为熄弧角波形。

      Figure 6.  Extinction angle of inverter-side thyristor under different faults

      加装调相机前,在单相接地短路和三相短路下均有换相失败情况发生,单相接地短路且不接入调相机时,发生连续换相失败。加装调相机后,三相短路下逆变侧不发生换相失败,单相接地短路下发生一次换相失败。由仿真结果可知,在直流受端加装调相机可以有效抑制换相失败的发生。

    • 换相失败发生后,暂态电压将出现2次较大峰值,具体过程为:直流电流会先升高,整流器无功消耗增加,引起送端换流母线节点无功缺额,送端母线电压会快速下降,但同时由于换相失败,低压限流环节启动,整流侧定电流控制响应,整流侧触发角迅速增大,直流电流迅速减小,直流传输有功大量减小,整流站处于有功盈余状态。由于交流系统电压对无功变化灵敏度更大,送端交流母线暂态电压将增大,并一直维持在较高水平。在故障切除后,逆变侧交流母线电压迅速恢复,逆变侧恢复正常换相,整流器消耗的无功功率将进一步减小,引起送端换流母线节点严重无功盈余,且此时直流传输的有功功率尚未恢复,将导致换流母线电压大幅上升,引起严重的暂态过电压。

      下面验证调相机在发生换相失败后对送端暂态过电压的抑制作用,在受端母线处设置单相接地、三相短路故障,切除时间均设为0.1 s,分别在单相接地短路、三相短路故障下,对比有无调相机情况下送端交流母线电压情况,如图7所示。

      Figure 7.  Voltage oscillogram of sending-end bus under different faults

      加装调相机前,在单相接地短路和三相短路下送端暂态过电压峰值分别为超过1.3 p.u.和1.4 p.u.,加装调相机后2种故障情况下送端暂态过电压峰值均在1.05 p.u.以下,由仿真结果可知,加装调相机对抑制换相失败后送端过电压具有良好的抑制作用。

    • 本节验证同步调相机参与换流站稳态无功补偿方案的可行性,该方案需要调相机在参与稳态无功补偿的同时保持足够的无功储备和动态响应能力。在不同故障类型开展仿真验证,在受端母线处分别设置单相接地短路、三相短路故障,短路时间均为0.1 s,对比调相机在稳态出力为0和稳态下滞相运行、出力100 Mvar下的动态支撑能力和2种情况下系统的电压稳定性。图8为2种运行方式下调相机的出力情况和送端交流母线电压。

      Figure 8.  Synchronous condenser output and voltage of sending-end AC bus under different faults

      由上述实验和图形可知,调相机稳态下滞相运行不影响调相机暂态下的快速响应能力和交流系统电压稳定性,且可以增加进相运行深度,有利于抑制暂态过电压。仿真表明调相机参与换流站稳态无功补偿的方案是可行的。

    • 本文归纳了调相机的发展脉络和现阶段投入工程应用的几种主要类型调相机的发展现状,建立调相机数学模型与等效电路图,分析了调相机的工作原理和动态特性,对调相机的适用场景和配置策略等开展了理论分析和仿真验证。结果表明,同步调相机响应速度快,强励能力强,可以为电力系统提供良好的无功支撑。在抑制直流受端换相失败,降低直流送端暂态过电压等方面,调相机具有独特的优势,并具有与换流站现有设备协调参与无功补偿,实现无功优化的应用前景。

      此外,调相机接入电力系统带来的功角稳定问题,分布式调相机对于集成化、智能化的更高要求,以及相较于常规发电机组等效转动惯量较低等调相机在设计制造和研究分析中面临的问题将是未来围绕调相机展开研究时更加需要关注的内容。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return