• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 11 Issue S1
Jun.  2024
Turn off MathJax
Article Contents

LIU Yu, WANG Wen. Research on the scheme of shared grounding electrode for four-circuit HVDC system [J]. Southern energy construction, 2024, 11(Suppl. 1): 29-35. DOI: 10.16516/j.ceec.2024.S1.06 doi:  10.16516/j.ceec.2024.S1.06
Citation: LIU Yu, WANG Wen. Research on the scheme of shared grounding electrode for four-circuit HVDC system [J]. Southern energy construction, 2024, 11(Suppl. 1): 29-35. DOI: 10.16516/j.ceec.2024.S1.06 doi:  10.16516/j.ceec.2024.S1.06

Research on the Scheme of Shared Grounding Electrode for Four-Circuit HVDC System

doi: 10.16516/j.ceec.2024.S1.06
  • Received Date: 2023-03-22
  • Rev Recd Date: 2023-04-12
  • Publish Date: 2024-06-30
  •   Introduction  To address the difficulty in selecting the grounding electrode location, a shared grounding electrode scheme is adopted. The shared grounding electrode can be transformed from an independent grounding electrode. It is relatively uncommon for a four-circuit DC system to share a grounding electrode, so its sharing scheme needs to be carefully studied.   Method  Based on the actual project and the existing situation of independent grounding electrodes, three schemes of grounding electrode sharing at the electrode location were proposed. Through simulation, the step voltage and current distribution of vertical grounding electrodes and deep well grounding electrodes were studied.   Result  When multiple grounding electrodes operate simultaneously, due to the shielding effect between conductors, their electrical characteristics differ from those of independent operation. When operating with the same polarity, regardless of whether it is a vertical grounding electrode or a deep well grounding electrode, the step potential increases compared to when it operates independently, and the electrode current distribution is more uneven.   Conclusion  Under the three feasible schemes, the step voltage does not exceed the limit value, but the step voltage is the smallest under scheme I, and there is no significant difference in the current distribution of the vertical grounding electrode.
  • [1] 张富春, 郭婷, 黎晓辰, 等. ±800 kV与±500 kV换流站共用接地极时入地电流对极址附近电位分布的影响 [J]. 电力建设, 2014, 35(7): 115-120. DOI:  10.3969/j.issn.1000-7229.2014.07.020.

    ZHANG F C, GUO T, LI X C, et al. Influence of ground-return current of ±800 kV and ±500 kV converter stations sharing a common grounding electrode on potential distribution [J]. Electric power construction, 2014, 35(7): 115-120. DOI:  10.3969/j.issn.1000-7229.2014.07.020.
    [2] 孙冰, 罗忠游, 于永军, 等. ±1 100 kV昌吉换流站与±800 kV天山换流站共同作用的直流偏磁问题研究 [J]. 高压电器, 2020, 56(8): 121-127. DOI:  10.13296/j.1001-1609.hva.2020.08.019.

    SUN B, LUO Z Y, YU Y J, et al. Study on the DC magnetic bias of the ±1 100 kV Changji converter station and the ±800 kV Tianshan converter station [J]. High voltage apparatus, 2020, 56(8): 121-127. DOI:  10.13296/j.1001-1609.hva.2020.08.019.
    [3] 曾富, 樊艳芳, 耿山. 特高压直流接地极优化选址研究 [J]. 高压电器, 2020, 56(10): 205-211. DOI:  10.13296/j.1001-1609.hva.2020.10.032.

    ZENG F, FAN Y F, GENG S. Research on optimal location of UHVDC grounding electrode [J]. High voltage apparatus, 2020, 56(10): 205-211. DOI:  10.13296/j.1001-1609.hva.2020.10.032.
    [4] 陈俊宇, 张卓杰. 南方电网直流工程共用接地极的风险及影响分析 [J]. 电工电气, 2021(11): 19-22,29. DOI:  10.3969/j.issn.1007-3175.2021.11.004.

    CHEN J Y, ZHANG Z J. Analysis on the risks and impact of common grounding electrodes in the DC project of China southern power grid [J]. Electrotechnics electric, 2021(11): 19-22,29. DOI:  10.3969/j.issn.1007-3175.2021.11.004.
    [5] 李瑞显, 胡上茂, 罗炜, 等. 鱼龙岭共用接地极线路检修对换流站内变压器及人身安全的影响 [J]. 南方电网技术, 2019, 13(7): 58-63. DOI:  10.13648/j.cnki.issn1674-0629.2019.07.008.

    LI R X, HU S M, LUO W, et al. Influence of Yulongling common grounding electrode line maintenance on transformers and personal safety in converter station [J]. Southern power system technology, 2019, 13(7): 58-63. DOI:  10.13648/j.cnki.issn1674-0629.2019.07.008.
    [6] 徐攀腾, 朱博, 喻文翔, 等. 乌东德与滇西北共用接地极线对直流输电系统影响研究 [J]. 电工技术, 2022(7): 49-53. DOI:  10.19768/j.cnki.dgjs.2022.07.014.

    XU P T, ZHU B, YU W X, et al. Research on the influence of the common ground electrode line between Wudongde and northwest Yunnan on the HVDC transmission system [J]. Electric engineering, 2022(7): 49-53. DOI:  10.19768/j.cnki.dgjs.2022.07.014.
    [7] 李坤泉, 李瑞芳, 杜浩, 等. 超高压直流输电线路共用接地极电气特性研究 [J]. 电工技术, 2021(16): 124-128. DOI:  10.19768/j.cnki.dgjs.2021.16.044.

    LI K Q, LI R F, DU H, et al. Research on characteristics of common grounding electrode in EHVDC transmission lines [J]. Electric engineering, 2021(16): 124-128. DOI:  10.19768/j.cnki.dgjs.2021.16.044.
    [8] 孔志达. 独立接地极改造为共用接地极方案研究 [J]. 南方能源建设, 2015, 2(3): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.022.

    KONG Z D. Research on the plan of independent earth electrode reconstructed to common earth electrode [J]. Southern energy construction, 2015, 2(3): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.022.
    [9] 卢毓欣, 赵晓斌, 李岩, 等. 共用接地极直流输电工程运行方式转换过程中换流站地网分流的影响及解决方案 [J]. 南方电网技术, 2022, 16(2): 103-110. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.014.

    LU Y X, ZHAO X B, LI Y, et al. Influence and countermeasures of the shunt current of the grounding grid of the converter station in operation modes conversion for HVDC transmission project with common ground electrode [J]. Southern power system technology, 2022, 16(2): 103-110. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.014.
    [10] 张涛, 谈小瑞, 黄悦华. 特高压直流共用接地极的暂态温升分析 [J]. 高电压技术, 2015, 41(11): 3672-3678. DOI:  10.13336/j.1003-6520.hve.2015.11.021.

    ZHANG T, TAN X R, HUANG Y H. Analysis on transient temperature rise of UHVDC common grounding electrode [J]. High voltage engineering, 2015, 41(11): 3672-3678. DOI:  10.13336/j.1003-6520.hve.2015.11.021.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(10)  / Tables(5)

Article Metrics

Article views(42) PDF downloads(2) Cited by()

Related

Research on the Scheme of Shared Grounding Electrode for Four-Circuit HVDC System

doi: 10.16516/j.ceec.2024.S1.06

Abstract:   Introduction  To address the difficulty in selecting the grounding electrode location, a shared grounding electrode scheme is adopted. The shared grounding electrode can be transformed from an independent grounding electrode. It is relatively uncommon for a four-circuit DC system to share a grounding electrode, so its sharing scheme needs to be carefully studied.   Method  Based on the actual project and the existing situation of independent grounding electrodes, three schemes of grounding electrode sharing at the electrode location were proposed. Through simulation, the step voltage and current distribution of vertical grounding electrodes and deep well grounding electrodes were studied.   Result  When multiple grounding electrodes operate simultaneously, due to the shielding effect between conductors, their electrical characteristics differ from those of independent operation. When operating with the same polarity, regardless of whether it is a vertical grounding electrode or a deep well grounding electrode, the step potential increases compared to when it operates independently, and the electrode current distribution is more uneven.   Conclusion  Under the three feasible schemes, the step voltage does not exceed the limit value, but the step voltage is the smallest under scheme I, and there is no significant difference in the current distribution of the vertical grounding electrode.

LIU Yu, WANG Wen. Research on the scheme of shared grounding electrode for four-circuit HVDC system [J]. Southern energy construction, 2024, 11(Suppl. 1): 29-35. DOI: 10.16516/j.ceec.2024.S1.06 doi:  10.16516/j.ceec.2024.S1.06
Citation: LIU Yu, WANG Wen. Research on the scheme of shared grounding electrode for four-circuit HVDC system [J]. Southern energy construction, 2024, 11(Suppl. 1): 29-35. DOI: 10.16516/j.ceec.2024.S1.06 doi:  10.16516/j.ceec.2024.S1.06
    • 作为直流输电的一个重要组成部分,直流接地极在系统运行期间起着极其重要的作用。在单极大地回线运行时,大电流持续通过接地极流入大地,使得极址附近地电位抬升,跨步电压和接触电压升高[1-2]

      随着城市不断发展,土地资源紧张,接地极选址变得越来越困难,在这种背景下,多个直流工程采用了共用接地极的方案,通过共用接地极,节约了重新建设费用和征地成本[3]。由于接地极共用,导致其入地电流增大,需要研究共用下对跨步电压等的影响,同时为了减小最大跨步电压,延长电极使用寿命,电极分流需要尽可能均匀[4-5]

      南方区域某极址原建设了垂直和深井型独立接地极,由于西电东送的持续建设,珠三角区域直流回数越来越多,合适的极址选择极为困难[6-7],因而考虑将独立接地极改造为共用接地极,目前共有四回直流需共用,需要研究该背景下的共用接地极方案[8]

    • 滇西北直流工程受端接地极与乌东德直流工程受端接地极均选址在长翠村一带,采用垂直型椭圆环接地极[9],两个极环距离约九百多米,同时滇西北受端接地极极环内还有三口深井接地极。

      牛从直流受端接地极位于韶关市翁源县,由于对西气东输二线工程管道存在安全影响,现需把接地极搬迁到长翠村极址。搬迁后,牛从直流受端接地极与乌东德直流受端、滇西北直流受端四回直流接地极共用。

      滇西北受端接地极使用年限为40 a,按容许一极以大地返回方式连续运行24 h考虑,额定入地电流3 125 A,最大过负荷电流3 821 A,采用52口垂直接地极组成椭圆环型。乌东德受端接地极使用年限为40 a,按容许一极以大地返回方式连续运行24 h考虑,额定入地电流3 125 A。深井接地极额定入地电流3 125 A,设计寿命35 a,深井接地极3口,两两电极井间距为100 m,每口井深1 000 m。

    • 根据《高压直流输电大地返回系统设计技术规范》(DLT 5224—2014),共用接地极注入电流按6 400 A进行设计,滇西北垂直接地极和深井接地极工程已建设完成,在此基础上研究共用接地极的可行方案。

    • 滇西北直流受端接入3口深井接地极独立运行,剩余三回直流共用两个垂直型接地极极环,如图1所示。

      Figure 1.  Scheme I of grounding electrode sharing

    • 四回直流共用两个垂直型接地极极环,如图2所示。

      Figure 2.  Scheme II of grounding electrode sharing

    • 在乌东德受端接地极极址范围内新建7口深井接地极与原有深井电极互连,新建电极沿椭圆环形均布,单口电极尺寸及长度同试验型深井接地极一致,滇西北受端使用独立垂直型接地极独立运行,其余三回直流共用已有3口+新增7口共10口深井接地极,如图3所示。

      Figure 3.  Scheme III of grounding electrode sharing

      本文研究3种接地极共用方案,由于电极电流分布作为表征运行状态的重要参数,跨步电势是决定极址附近人身安全与工程布置的直观控制值,因此以接地极跨步电势和电极溢流大小作为分析指标。

    • 多个接地极注入同极性电流与异极性电流时,对参数影响较大,本次研究分别计算两处接地极同极性运行和异极性运行的组合情况。

      根据极址测量的土壤电阻率,接地极允许最大跨步电势为11.31 V。

    • 分别计算乌东德和牛从受端共用两个垂直型接地极极环独立运行,和滇西北采用深井接地极独立运行时的跨步电势,再与乌东德和牛从共用两个垂直型接地极、滇西北采用深井接地极同时运行时的跨步电势做对比,同极性和异极性计算结果分别见表1表2

      运行工况 垂直接地极共用 深井接地极独立运行 接地极共用
      注入电流 乌东德+牛从
      6 400 A
      滇西北3 821 A 乌东德+牛从
      6 400 A滇西北
      3821 A
      垂直接地极共
      用跨步电势
      8.84 V 9.08 V
      深井跨步电势 1.1 V 1.82 V

      Table 1.  Calculation results of the grounding electrode under the operating conditions with the same polarity

      运行工况 垂直接地极共用 深井接地极独立运行 接地极共用
      注入电流 乌东德+牛从
      6 400 A
      滇西北3 821 A 乌东德+牛从
      6 400 A滇西北
      −3 821 A
      垂直接地极共
      用跨步电势
      8.84 V 9.03 V
      深井跨步电势 1.1 V 2.72 V

      Table 2.  Calculation results of the grounding electrode under the operating conditions with different polarity

      无论是同极性还是异极性运行,接地极同时运行时均存在相互影响,使得跨步电势相对于独立运行值有差异。深井接地极相比于垂直接地极能极大改善跨步电势分布,减小最大跨步电势。两种不同的运行工况,其跨步电势均未超出允许值,且有较大裕度,最大跨步电势为9.08 V。

    • 表3所示,3个换流站共用两个垂直型接地极极环,跨步电势均未超允许值,最大跨步电势为9.14 V,有较大裕度。

      运行工况 接地极共用
      注入电流 最大为牛从两回额定电流之和6 400 A
      滇西北垂直接地极跨步电势 9.14 V
      乌东德垂直接地极跨步电势 8.23 V

      Table 3.  Calculation results of the shared grounding electrode

    • 表4表5所示,方案三中两种不同的运行工况,其跨步电势均未超出允许值,最大跨步电势为10.67 V,安全裕度已较小。

      运行工况 滇西北垂直接
      地极独立运行
      深井接地极独立运行 接地极共用
      注入电流 滇西北
      3821 A
      乌东德+
      牛从6400 A
      乌东德+牛从
      6 400 A滇西北
      3821 A
      滇西北垂直接
      地极跨步电势
      10.17 V 10.67 V
      深井跨步电势 0.66 V 2.15 V

      Table 4.  Calculation results of the grounding electrode under the operating conditions with the same polarity

      运行工况 滇西北垂直接
      地极独立运行
      深井接地极独立运行 接地极共用
      注入电流 滇西北
      3821 A
      乌东德+
      牛从6 400 A
      乌东德+牛从
      6 400 A滇西北
      −3 821 A
      滇西北垂直接
      地极跨步电势
      10.17 V 10.05 V
      深井跨步电势 0.66 V 3.02 V

      Table 5.  Calculation results of the grounding electrode under the operating conditions with different polarity

    • 首先计算乌东德和牛从受端共用两个垂直型接地极极环独立运行,各个电极的溢流大小,以及滇西北采用深井接地极独立运行时电极的溢流大小,与共用方案下电极溢流作对比分析,共用方案下又分为垂直接地极和深井接地极同极性和异极性运行工况。

      乌东德垂直接地极3种工况下电极电流分布如图4所示。在独立运行时,椭圆环端部电极电流最大,电极电流差值最大为13.1 A。无论是独立运行还是同极性异极性运行,3种工况下垂直接地极的电极电流分布规律相似,都是椭圆环端部L11~L14电极电流最大,导致该处跨步电势最大,电极L12最大电流达到了75.6 A,需要重点校核该处土壤温升和电极腐蚀情况[10]。同极性运行时,电极电流最大与最小的差值为18.5 A,大于独立运行的差值13.1 A;异极性运行时,电极电流最大与最小的差值为8.7 A,小于独立运行的差值13.1 A。这意味着,相比于独立运行方式,同极性运行时电极电流分布更不均匀,而异极性运行电极电流分布更为均匀。

      Figure 4.  Current distribution of vertical grounding electrode in Wudongde

      滇西北垂直接地极3种工况下电极电流分布如图5所示。在独立运行时,椭圆环端部电极电流最大,电极电流差值最大为12 A。椭圆环端部电极电流较大,其中D37~D40电极电流最大,导致该处跨步电势最大,电极D38最大电流达到了70.7 A。同极性运行时电极电流分布更不均匀,而异极性运行电极电流分布更为均匀。

      Figure 5.  Current distribution of vertical grounding electrode in northwestern Yunnan

      深井接地极3种工况下计算结果见图6,深井接地极独立运行时,电极电流分布较为均匀,电极电流最大最小差值为15 A。3种工况下,电极电流最大为1 293 A,出现在S2电极。同极性运行方式使得深井接地极电极电流分布更不均匀。

      Figure 6.  Current distribution of deep well grounding electrode

      综上,方案一垂直接地极最大电极电流为75.6 A,出现在垂直接地极L电极L12,需要重点校核该处土壤温升和电极腐蚀情况。深井接地极电极电流最大为1 293 A,出现在接地极S2。

    • 图7图8所示,两个垂直接地极极环共用作为一个接地极,受屏蔽效应影响,椭圆环外端部电极电流增大,两个椭圆环距离最近的电极电流减小。垂直接地极最大电极电流为69.3 A,出现在滇西北垂直接地极电极D39。

      Figure 7.  Current distribution of vertical grounding electrode in Wudongde

      Figure 8.  Current distribution of vertical grounding electrode in northwestern Yunnan

    • 图9所示,同极性和异极性运行,椭圆环端部电极电流较大,相比于独立运行方式,同极性和异极性运行时电极电流分布更不均匀。垂直接地极最大电极电流达到了80.9 A,出现在电极D39。

      Figure 9.  Current distribution of vertical grounding electrode in northwestern Yunnan

      图10所示,深井接地极最大电极电流达到了906 A,出现在电极S9,需要重点校核该处土壤温升和电极腐蚀情况。同极性、异极性运行方式都使得深井接地极电极电流分布更不均匀。

      Figure 10.  Current distribution of deep well grounding electrode

      综上,方案三,滇西北垂直接地极最大电极电流为80.9 A,出现在电极D39,需要重点校核该处土壤温升和电极腐蚀情况。深井接地极电极电流最大为906 A,出现在接地极S9。

    • 1)深井接地极相比于垂直接地极能极大改善跨步电势分布,减小最大跨步电势。

      2)方案一和方案三中,同极性和异极性运行时,无论是垂直接地极还是深井接地极,跨步电势相比于其独立运行时都有所增大。

      3)垂直接地极,相比于独立运行方式,同极性运行时电极电流分布更不均匀。同极性和异极性运行方式都使得深井接地极电极电流分布更不均匀。

      4)3种方案下,跨步电压均未超过限值,但方案一下跨步电压最小。3种方案下,垂直接地极电极电流分布差异不大,方案一的深井接地极分流最为均匀,方案二的龙门垂直接地极极环分流最为均匀,方案三的东方垂直接地极极环分流最为均匀。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return