• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 11 Issue S1
Jun.  2024
Turn off MathJax
Article Contents

CHEN Wei, LIU Yihui, ZHONG Zhiheng. Design process of the large-span roof truss of the main workshop of a gas turbine power plant [J]. Southern energy construction, 2024, 11(Suppl. 1): 89-93. DOI: 10.16516/j.ceec.2024.S1.13 doi:  10.16516/j.ceec.2024.S1.13
Citation: CHEN Wei, LIU Yihui, ZHONG Zhiheng. Design process of the large-span roof truss of the main workshop of a gas turbine power plant [J]. Southern energy construction, 2024, 11(Suppl. 1): 89-93. DOI: 10.16516/j.ceec.2024.S1.13 doi:  10.16516/j.ceec.2024.S1.13

Design Process of the Large-Span Roof Truss of the Main Workshop of A Gas Turbine Power Plant

doi: 10.16516/j.ceec.2024.S1.13
  • Received Date: 2023-11-22
  • Rev Recd Date: 2023-12-29
  • Publish Date: 2024-06-30
  •   Introduction  The roof structure of the main workshop of the gas turbine power plant is a long-span space grid structure, which has high safety requirements. In the design process, the selection of structural schemes, loads and other factors have a crucial impact on the safety and economy of the roof truss structure, so it is of great significance to study the selection and load optimization of the roof truss structure for power plant construction.   Method  In this paper, based on a gas turbine power plant project, the roof truss structure of its main workshop was designed and compared with two roofing types of heavy concrete roofing and light steel roofing with the help of SAP2000 structural analysis and design software, so as to optimize the loads and reduce the amount of steel under the premise of ensuring safety.   Result  By design comparison, the height and mass of the single truss structure of the light roofing are smaller, which is conducive to the transportation and construction of the whole truss, and the steel used in the light roofing truss structure is only 48.2% of the steel used in the heavy roofing.   Conclusion  In areas like wind environment, the use of light steel roofing has the advantages of high construction feasibility and good economic benefits.
  • [1] 陈昌山, 朱瑾, 范勇刚, 等. H级燃机电厂新型主厂房布置方案检修起吊设计研究 [J]. 电力勘测设计, 2021(11): 33-40. DOI:  10.13500/j.dlkcsj.issn1671-9913.2021.11.007.

    CHEN C S, ZHU J, FAN Y G, et al. Design and research of maintenance and hoist scheme for the new main building layout plan of H-class CCPP [J]. Electric power survey & design, 2021(11): 33-40. DOI:  10.13500/j.dlkcsj.issn1671-9913.2021.11.007.
    [2] 杨雪平, 张肖峰, 韦文兵. 空间管桁架在±1 100 kV户内直流场中的应用研究 [J]. 南方能源建设, 2018, 5(3): 83-88. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.013.

    YANG X P, ZHANG X F, WEI W B. Research and application on space tubular truss in ± 1 100 kV indoor DC hall [J]. Southern energy construction, 2018, 5(3): 83-88. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.013.
    [3] 杨宏亮, 苑森. 空间管桁架与实腹钢梁在双坡屋面设计中应用比较 [J]. 武汉大学学报(工学版), 2010, 43(增刊1): 144-148.

    YANG H L, YUAN S. Comparison between spatial steel-pipe truss and steel girder used for two-slope roof frame [J]. Engineering Journal of Wuhan University, 2010, 43(Suppl.1): 144-148.
    [4] 彭菲菲. 厂房钢屋架优化选型设计 [J]. 工程建设与设计, 2004(4): 49-51. DOI:  10.3969/j.issn.1007-9467.2004.04.017.

    PENG F F. Optimizes design the selecting type for the steel roof of factory building [J]. Construction & design for engineering, 2004(4): 49-51. DOI:  10.3969/j.issn.1007-9467.2004.04.017.
    [5] 何润财, 涂国富. EPC工程总承包项目中采购成本控制 [J]. 南方能源建设, 2016, 3(增刊1): 173-176. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.039.

    HE R C, TU G F. Procurement cost control in EPC general contract project [J]. Southern energy construction, 2016, 3(Suppl.1): 173-176. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.039.
    [6] 李强波, 戴戈, 宁文涛, 等. 火力发电厂汽机房屋面空间钢管桁架的应用研究 [J]. 武汉大学学报(工学版), 2013, 46(增刊1): 192-195.

    LI Q B, DAI G, NING W T, et al. Research on application of steam turbine house cover spatial steel pipe truss in thermal power plant [J]. Engineering Journal of Wuhan University, 2013, 46(Suppl.1): 192-195.
    [7] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Load code for the design of building structures: GB 50009—2012 [S]. Beijing: China Architecture & Building Press, 2012.
    [8] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for design of steel structures: GB 50017—2017 [S]. Beijing: China Architecture & Building Press, 2017.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(5)  / Tables(1)

Article Metrics

Article views(68) PDF downloads(3) Cited by()

Related

Design Process of the Large-Span Roof Truss of the Main Workshop of A Gas Turbine Power Plant

doi: 10.16516/j.ceec.2024.S1.13

Abstract:   Introduction  The roof structure of the main workshop of the gas turbine power plant is a long-span space grid structure, which has high safety requirements. In the design process, the selection of structural schemes, loads and other factors have a crucial impact on the safety and economy of the roof truss structure, so it is of great significance to study the selection and load optimization of the roof truss structure for power plant construction.   Method  In this paper, based on a gas turbine power plant project, the roof truss structure of its main workshop was designed and compared with two roofing types of heavy concrete roofing and light steel roofing with the help of SAP2000 structural analysis and design software, so as to optimize the loads and reduce the amount of steel under the premise of ensuring safety.   Result  By design comparison, the height and mass of the single truss structure of the light roofing are smaller, which is conducive to the transportation and construction of the whole truss, and the steel used in the light roofing truss structure is only 48.2% of the steel used in the heavy roofing.   Conclusion  In areas like wind environment, the use of light steel roofing has the advantages of high construction feasibility and good economic benefits.

CHEN Wei, LIU Yihui, ZHONG Zhiheng. Design process of the large-span roof truss of the main workshop of a gas turbine power plant [J]. Southern energy construction, 2024, 11(Suppl. 1): 89-93. DOI: 10.16516/j.ceec.2024.S1.13 doi:  10.16516/j.ceec.2024.S1.13
Citation: CHEN Wei, LIU Yihui, ZHONG Zhiheng. Design process of the large-span roof truss of the main workshop of a gas turbine power plant [J]. Southern energy construction, 2024, 11(Suppl. 1): 89-93. DOI: 10.16516/j.ceec.2024.S1.13 doi:  10.16516/j.ceec.2024.S1.13
    • 燃机电厂主厂房为燃机设备、汽机设备运行及检修的空间,运转层为大平台[1],同时厂房内配有重级吊车,故而厂房内的上部空间无法立柱,屋架结构多为大跨度钢结构,常见形式有实腹钢梁、钢网架、钢屋架等。倒三角管桁架为空间网架的一种,由于其具有良好的侧向稳定性和抗扭刚度,近年来在电厂主厂房中广泛使用 [2]。杨宏亮[3]也曾指出倒三角管桁架比实腹钢梁更适用于大跨度厂房结构,且自重相对其他结构体系更轻巧。文章谈到的燃机电厂主厂房屋架,也选用倒三角管桁架的结构形式。

      对于主厂房屋面而言,一般常采用混凝土结构重型屋面或轻型钢屋面两种形式。混凝土结构重型屋面一般以压型钢板为底模,在其上现浇钢筋混凝土板,这种形式的屋面自重大[4],有利于结构抗风,在强风荷载下不易破坏。而轻型屋面则为压型钢板复合保温卷材防水屋面,自重小,对于屋架结构的经济性优化更为有利,尤其在EPC工程总承包项目中,成本控制一直是非常关键的问题[5]

      结构选型和荷载输入是影响管桁架结构设计的重要因素[6]。文章基于某2×800 MW级燃机项目,对主厂房屋架的设计过程进行阐述,同时对重型屋面和轻型屋面两种形式的屋架结构,进行建模分析,对比两者的优劣,为电厂主厂房屋架的结构设计提供参考。

    • 本工程位于广东省惠州市,以广东省某燃机电厂为例,主厂房屋架设计工作年限为50年。地面粗糙度为A类,基本风压0.85 kPa;抗震设防烈度为7度,地震设计基本加速度为0.10 g,地震分组为第一组,场地类别为Ⅱ类,抗震设防类别为乙类。主厂房屋架安全等级为一级,结构重要性系数为1.1。

      主厂房总高度39 m,屋架下弦杆中心标高定为33.500 m,屋架以下设有吊车梁,主厂房运行层楼面等;设有两套机组,如图1所示:1号机组纵向长度84.5 m,2号机组纵向长度96 m,横向跨度为46 m,选用倒三角管桁架的屋架型式,屋面设有光伏支架,为上人双坡屋面。由于两套机组布置、柱距一致,仅2号机组比1号机组多一跨,为方便起见,后文仅以1号机组为研究对象。

      Figure 1.  Diagram of main workshop roofing

    • 1)屋面恒荷载

      屋面型式为压型钢板轻型屋面,其恒载为屋面的自重,取为1.0 kN/m2。而重型屋面板厚为100 mm,拟采用波高51 mm的压型钢板YX51-305-915为底模,恒载取为2.25 kN/m2

      2)屋面活荷载

      主厂房屋面上设有光伏支架,为上人屋面,屋面活荷载为2.0 kN/m2[7];光伏支架荷载由厂家提供,为0.2 kN/m2;此外,屋面布有30台暖通风机,每台重800 kg,以上即为所有屋面活荷载。

      考虑到建筑屋面面积较大,上人屋面的活荷载为2.0 kN/m2,而在设有光伏支架的区域不可能同时有人员活动,因此,为保证经济性,在有光伏的区域仅考虑0.5 kN/m2的活荷载,加上光伏支架荷载,即为不上人屋面的活荷载值;无光伏区域仍按上人屋面活荷载考虑,如图2所示,阴影部分为设置光伏区域。

      Figure 2.  Zoning diagram of Unit 1 roofing live load

    • 该工程主厂房屋架初步方案为采用混凝土重型屋面,由重型屋面恒荷载较大,导致重型屋面的屋架结构需要取用较大的矢高,方可设计得到合理的杆件截面。

      对于此工程46 m跨度的厂房屋面,若选用重型屋面,经设计后,屋架的矢高需达5.15 m,下弦杆圆管截面尺寸 560×22(应力比0.864),上弦杆截面450×20(应力比0.794),单榀横向管桁架重量达56 t;这给桁架的整榀运输及吊装带来较大困难。因此,主厂房屋架改用轻型屋面方案:屋架矢高初定3.5 m,设6.5%排水坡度,两侧高度2.0 m,此外,还需保证杆件之间的夹角不小于30°,如图3所示。

      Figure 3.  View of single transverse truss

    • 本工程主厂房借助SAP2000结构分析软件进行设计,建立主厂房与屋架的整体模型,如图4所示。屋架与主厂房混凝土框架柱牛腿铰接连接,屋架支撑及腹杆之间按桁架杆件连接,释放端部弯矩;屋架材料均采用Q355B钢材。

      Figure 4.  Overall model and top view of roof truss

      轻型屋面方案,上弦杆用到273×14(钢管外径×壁厚)、325×14、325×16三种截面,下弦杆用到325×16、299×16、450×20三种截面,其他杆件截面包括108×6、133×8、152×8、194×8等,所有杆件应力比、挠度比均小于0.85,屋架跨中最大竖向位移,亦小于《钢结构设计规范》的要求[8],可见结构方案合理,强度、刚度满足要求,应力比云图如图5所示。

      Figure 5.  Stress ratio cloud map of member

      表1给出重型屋面与轻型屋面方案的相关参数对比,其中重量不包括屋面檩条质量。可见采用轻型屋面,屋架高度小,同等应力比水平下杆件截面小;最大单榀桁架质量为重型屋面屋架的53.5%,1号机组屋架总重仅为重型屋面屋架的48.2%,经济性、施工可行性上具有较大优势。实际上,当屋架横向跨度超过45 m时不宜使用重型屋面,如必须采用,则需合理布置结构方案,选择屋架的杆件截面型式,以减小屋架高度及自重。

      屋面类型 重型屋面 轻型屋面
      屋架矢高/m 5.15 3.5
      下弦杆最大截面(应力比) 560×22(0.864) 450×20(0.846)
      上弦杆最大截面(应力比) 450×20(0.794) 325×16(0.79)
      最大一榀桁架重量/t 56 30(53.5%)
      1号机总重量/t 616 297(48.2%)

      Table 1.  Comparison of heavy roofing and light roofing

    • 本文对某燃机项目主厂房屋架结构,优化屋面活荷载取值及分布后,进行混凝土重型屋面和轻型钢屋面两种方案比选设计,建立不同的SAP2000分析模型,得到结论如下:

      1)重型屋面相比于轻型屋面,其矢高更大,导致单榀桁架的重量和空间体积也较大,对于屋架的单榀运输和安装有更高的要求。

      2)重型屋面由于自身重量大,以至于需要采用更大的杆件截面组成屋架结构,这同时增加屋架结构的自重,用钢量大。而采用轻型钢屋面,用钢量仅为重型屋面的48.2%。

      由此可见,在设计基本风压较低的区域,对于此类跨度达46 m的屋架结构,采用重型屋面的形式是不合理的,采用轻型钢屋面屋架结构既可保证安全性,且经济性较好。

Reference (8)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return