-
随着电网规模的日益扩大,电网互联程度越来越高,电网的短路电流水平急剧增大,对电网的安全性和可靠性造成严重影响[1],并成为制约电网规模进一步扩大的主要因素[2],迫切需要一种有效抑制短路电流的方法或装置。
传统的限流措施主要从电网结构、系统运行方式以及设备三方面着手[3,4]。在电网结构上,常用的是减少互联网络的紧密型,减小电网规模或互联程度[5];在系统运行方式上,常用的是将低电压等级电力系统解列分片运行,或采用多母线运行或母线分段运行[6];在设备上,常用的是安装串联电抗器、分裂电抗器、高阻抗变压器等[7]。这些方法都可对故障电流进行一定的约束,但同时也降低了电网优化配置能源的能力,存在一定的缺陷[1]。因超导故障限流器(Superconductive Fault Current Limiter,以下简称SFCL)对优化电网设计、保证电能质量、稳定系统电压、提高电网安全性等多方面都具有不可比拟的独特优势,成为电网克服短路电流比较理想的设备,是解决上述矛盾的有效手段[8]。
SFCL基于运行特性的不同,可分为失超型和非失超型。失超型SFCL主要利用超导材料超导态零电阻、失超后电阻急剧增加的特性,正常态损耗小,限流态电阻大。这种SFCL理论上利用了超导材料的特性,但在实际应用中由于超导材料的失超恢复时间较长,难以满足系统重合闸的要求,制约了失超型SFCL的应用。饱和铁心型超导限流器是非失超型的一种,利用超导材料的大通流能力提供较强的磁场使铁心深度饱和,装置表现出低阻抗,限流时,装置退出饱和,呈现高阻抗实现限流,是目前最具竞争优势的一类限流器[1]。
HTML
-
接入饱和铁心型SFCL后,在系统发生短路故障时,SFCL在抑制短路电流的同时也会对电网的暂态稳定性、自动重合闸、继电保护等多方面其产生综合影响。因此,在SFCL的应用过程中,有必要就SFCL对系统暂态稳定的影响、与自动重合闸操作的配合以及继电保护的重新整定等重点问题进行研究,使SFCL与电网其他设备协调运行。
-
在串有饱和铁心型SFCL的电力系统中,当系统发生故障时,SFCL进入限流态,对系统呈现出较大的阻抗。这个阻抗的串入,势必会对系统的网络参数产生影响。对于单机无穷大系统,发电机到无穷大系统之间的转移阻抗将发生变化,该转移阻抗将影响发电机的功率特性,继而影响到单机无穷大系统的暂态稳定性。
文献[21]分析了饱和铁心型SFCL对电力系统暂态稳定性的影响规律,得出如下结论:对于单机无穷大系统而言,当近机端发生单相故障时系,统仍可保持基本稳定,饱和铁心型SFCL的接入会使功角摆动增大,不利于系统的暂态稳定性;多相短路时,不装设饱和铁心型SFCL的系统震荡失稳,投入饱和铁心型SFCL后系统稳定性得到改善,其中三相短路时,投入限流阻抗值越大,越有利与系统稳定,两相短路和两相接地短路时与三相短路的状况相反。文献[22]表明,三相短路时,随着故障位置从机端向后移,SFCL对暂态稳定的有利程度增加。
-
从饱和铁心型SFCL的工作原理可见,当系统发生短路故障时,SFCL的铁心将退出饱和呈现高阻态实现限流;当系统故障清除后,SFCL应恢复低阻态,降低SFCL装置的接入对系统的影响。电网中,常见的首次自动重合闸时间为1s或更短[23]。这就要求饱和铁心型SFCL需在很短的时间内实现从高阻到低阻的转变以配合系统重合闸。而饱和铁心型SFCL的阻抗恢复过程本质上是超导线圈重新励磁的过程。若励磁恢复不充分,重合闸后限流器工作在磁化曲线的Ⅱ段,限流器呈现高阻抗,产生较大的压降,且会引入大量谐波,严重影响电网的稳定运行。另外,对于装置本身而言,若重合闸时铁心尚未深度饱和,直流绕组可能由于感抗较大而产生较高的过电压。因此,重合闸之前应保证铁心已经达到一定的磁饱和程度。但短时间内完成超导磁体的充磁,也可能由于直流绕组中的电流变化过快而产生较大的过电压,损坏直流绕组,相应也会增加直流励磁系统的设计难度。
饱和铁心型SFCL在电网重合闸时,直流励磁不必完全恢复至额定工作值,只要能够确保在一定交流退磁作用下,铁心的最小磁化强度处于磁化曲线Ⅰ段和Ⅱ段的拐点处即可。这样即降低了对励磁电压、电流的要求,提高了设备运行的安全性,也可满足重合闸后限流器压降较低的要求[24-25]。
-
距离保护是保护电力系统安全稳定运行的重要手段之一,其主要元件是阻抗继电器。距离保护的主要原理是根据故障点至保护安装点之间的距离的远近来确定动作时间,从而实现保护的选择性。对距离保护安装位置较近的短路点,动作时间短;对距离保护安装位置较远的短路点,则动作时间较长。当系统发生故障时,距离保护装置根据其端子两端的电压和电流测得短路点位保护安装置至的阻抗值Zm,并与整定阻抗Zset相比较,以确定出故障所处的区段。如图4所示是保护范围。当测量阻抗在圆内时,保护动作,否则不动作。
从图4可见,圆内或圆上区域位置到圆心的距离均不大于圆半径,因此距离保护的动作条件为:
((1)) 由于饱和铁心型SFCL串联在线路中,在故障过程中靠增加限流阻抗来实现限流。因此,接入饱和铁心型SFCL后,由于其电感和电阻的投入,线路原有阻抗特性发生变化,距离保护时测量阻抗将较未投入饱和铁心型SFCL时有所增加,这将导致距离保护的保护范围缩小,灵敏度降低。因此接入饱和铁心型SFCL后,需重新整定距离保护的整定阻抗,并校验灵敏度,且加以修正。然而,由于饱和铁心型SFCL的限流阻抗与短路电流的大小有关,且并不呈线性关系,这为距离保护的整定带来了新的挑战。
-
饱和铁心型SFCL的直流绕组通过铁心与交流绕组耦合,直流绕组侧可能出现较高的感应电压,此高压可能对磁体及控制系统构成致命的威胁,需在磁体设计时尽量减小直流绕组过电压。超导线圈并联结构可减少磁体的匝数,降低感应电压,增强系统安全性。三相六铁心的布局结构也能尽量减小限流器稳态运行时直流绕组中的交流感应电压。
-
对于改进型饱和铁心型SFCL,在短路故障发生时,需尽快切断直流励磁回路,使铁心退出饱和呈现高阻抗从而限流。因此,故障检测的快速性和准确性至关重要。一般要求监控装置能排除由电网振荡、负载波动、谐波影响及外界干扰等因素造成的系统电流瞬时波动,准确判断系统短路故障的发生并发出动作指令,避免误动作。直流控制回路一般要求能在故障发生10 ms内切断直流励磁回路。