• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 2 Issue 2
Aug.  2020
Turn off MathJax
Article Contents

Te LÜ, Jie ZHANG, Wentang ZHENG, Yongtang YU. Simplied Method for Stability Analysis of Two-layered Slope Under Rainfall Infiltration[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 119-123. doi: 10.16516/j.gedi.issn2095-8676.2015.02.023
Citation: Te LÜ, Jie ZHANG, Wentang ZHENG, Yongtang YU. Simplied Method for Stability Analysis of Two-layered Slope Under Rainfall Infiltration[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 119-123. doi: 10.16516/j.gedi.issn2095-8676.2015.02.023

Simplied Method for Stability Analysis of Two-layered Slope Under Rainfall Infiltration

doi: 10.16516/j.gedi.issn2095-8676.2015.02.023
  • Received Date: 2015-03-18
  • Publish Date: 2015-06-25
  • Due to its ease to use, the Green-Ampt model is potentially very useful for infiltration analysis for predicting of slope failure. In this study, the governing equation for infiltration analysis on sloping surfaces in layered soils is derived. The depth of wetting front predicted from the modified Green-Ampt model is close to that predicted based on Richards' function. Based on the limit equilibrium method, the safety factor calculation.in layered slope is proposed. Research shows that along with the increase of the rainfall, the wetting front position down gradually and the safety factor decreases.When the lower soil's strength is higher, the most dangerous sliding surface will be at the bottom of the first layer of soil, the safety factor will not change with time. However, when the infiltration depth is large enough, the most dangerous sliding surface will locate at the wetting front again, the safety factor will change.And, the safety factor is influenced by the rainfall intensity and slope angle, thus the slope will be more instability under the condition of high rainfall strength and steep slopes. In this paper, the modified method is simple, can be more easily applied to the engineering practice, and has value to further study.
  • [1] PHOON K K, TAN T S, CHONG P C. Numerical simulation of RichArds Equation in Partially Saturated Porous Media: Under-Relaxation and Mass Balance [J]. Geotechnical and Geological Engineering, 2007, 25: 525-541.
    [2] MUNTOHAR A S, LIAO H J. Analysis of Rainfall-Induced Infinite Slope Failure During Typhoon Using A Hydrological Geotechnical model [J]. Environmental Geology, 2009, 56(6): 1145-1159.
    [3] ZHANG J, HUANG H, ZHANG L, et al. Probabilistic Prediction of Rainfall-Induced Slope Failure Using A Mechanics-Based Model [J]. Engineering Geology, 2014, 168: 129-140.
    [4] GREEN W H, AMPT G A. Studies of Soil Physics, Part 1-the Flow of Air and Water Through Soils [J]. Agricultural Science, 1911, 4(1): 1-24.
    [5] BOUWER H. Infiltration of Water into Nonuniform Soil [J]. Irrigation and Drainage Division of ASCE, 1969, 95: 451-462.
    [6] CHILDS E C, BYBORDI M. The Vertical Movement of Water in Stratified Porous Material-1 Infiltration [J]. Water Resources Research, 1969, 5: 446-459.
    [7] FOK Y S. One-Dimensional Infiltration into Layered Soils [J]. Irrigation and Drainage Division, ASCE, 1970, 90:121-129.
    [8] MOORE I D. Infiltration Equation Modified for Subsurface Effects [J]. Irrigation and Drainage Division, ASCE, 1981, 107: 71-86.
    [9] CHEN L, YOUNG M H. Gren-Ampt Infiltration Model for Sloping Surfaces [J]. Catena, 1991, 1(18): 91-111.
    [10] SUNG Euncho. Infiltration Analysis to Evaluate the Surficial Stability of Two-Layered Slopes Considering Rainfall Characteristics [J]. Engineering Geology, 2009, 105:32-43.
    [11] GENUCHTEN M T Van. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils [J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [12] 吕特,张洁,XUE Jianfeng. Green-Ampt模型渗透系数取值方法研究 [J]. 岩土力学(增刊)录用,2015.
    [13] TE L V, ZHANG Jie. On Permeability Coefficient of Green-Ampt Mod el [J]. Rock and Soil Mechanics, Accepted.
    [14] MEIN R G, FARRELL D A. Determination of Wetting Front Suction in the Green-Ampt Equation [J]. Soil Science Society of America Journal, 1974,38: 872-876.
    [15] FREDLUND D G, MORGENSTERN N R, WIDGER R A. The Shear Strength of Unsaturated Soils [J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(4)  / Tables(1)

Article Metrics

Article views(333) PDF downloads(24) Cited by()

Related

Simplied Method for Stability Analysis of Two-layered Slope Under Rainfall Infiltration

doi: 10.16516/j.gedi.issn2095-8676.2015.02.023

Abstract: Due to its ease to use, the Green-Ampt model is potentially very useful for infiltration analysis for predicting of slope failure. In this study, the governing equation for infiltration analysis on sloping surfaces in layered soils is derived. The depth of wetting front predicted from the modified Green-Ampt model is close to that predicted based on Richards' function. Based on the limit equilibrium method, the safety factor calculation.in layered slope is proposed. Research shows that along with the increase of the rainfall, the wetting front position down gradually and the safety factor decreases.When the lower soil's strength is higher, the most dangerous sliding surface will be at the bottom of the first layer of soil, the safety factor will not change with time. However, when the infiltration depth is large enough, the most dangerous sliding surface will locate at the wetting front again, the safety factor will change.And, the safety factor is influenced by the rainfall intensity and slope angle, thus the slope will be more instability under the condition of high rainfall strength and steep slopes. In this paper, the modified method is simple, can be more easily applied to the engineering practice, and has value to further study.

Te LÜ, Jie ZHANG, Wentang ZHENG, Yongtang YU. Simplied Method for Stability Analysis of Two-layered Slope Under Rainfall Infiltration[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 119-123. doi: 10.16516/j.gedi.issn2095-8676.2015.02.023
Citation: Te LÜ, Jie ZHANG, Wentang ZHENG, Yongtang YU. Simplied Method for Stability Analysis of Two-layered Slope Under Rainfall Infiltration[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 119-123. doi: 10.16516/j.gedi.issn2095-8676.2015.02.023
  • 我国是一个多山丘陵国家,在地形起伏的区域建设有大量的能源、交通等重要基础设施。而在这些区域,降雨引起的斜坡失稳是常见的自然灾害之一。降雨入渗过程中斜坡体内孔隙水压力的分布是斜坡稳定性分析的关键。目前,降雨入渗分析多基于Richards方程进行。该模型物理意义明确,但存在求解难度大、且在一定条件下难以收敛的缺点[1]。为克服这一不足,近年来一些学者开始尝试采用水文水资源领域常用的Green-Ampt模型来求解降雨条件下斜坡中的孔隙水压力分布[2-3]

    Green-Ampt模型最早由Green和Ampt[4]提出,该模型假设入渗过程存在明显的湿润锋,该湿润锋将土层分成饱和区和非饱和区两个区域。由于Green-Ampt模型由于计算简单,使用方便,在农业、水文、水资源领域得到了广泛的发展和应用。例如,Bouwer和Childs等[5-6]推导了适用于水平层状土的Green-Ampt入渗模型;Fok[7]将平均渗透系数的概念引入模型中,得到了水平双层土中累计入渗量和降雨时间的解析解表达式。Moore[8]推到了考虑积水产生时间的层状土层条件下的Green-Ampt入渗模型。Chen和Young[9]研究了倾斜均质地层条件下的降雨入渗模型。

    在自然界中不少滑坡是在双层土地层中发生的[10]。然而,现有Green-Ampt模型仅能模拟水平成层土层或倾斜匀质土层中的入渗过程,这为Green-Ampt模型在降雨条件下斜坡稳定性评价中的进一步应用形成了障碍。针对这一不足,本文的目的是推导适用于双层土斜坡降雨入渗分析的Green-Ampt模型,在此基础上提出降雨条件下双层土斜坡的稳定性分析方法。论文将首先推导双层土斜坡条件下累计入渗量和降雨时间的解析表达式。然后,通过与现有解析解以及Richards方程求解结果进行对比,对提出的模型进行验证。之后,基于提出的Green-Ampt模型建立降雨条件下双层土斜坡安全系数的求解方法,并利用提出的模型对双层土斜坡稳定性的影响因素进行分析。本论文将为降雨条件下双层土斜坡的稳定性分析提供一种简单、实用、高效的计算方法。

  • 本文考察的多层土斜坡如图1所示,边坡的坡角为α,降雨强度为q。根据达西定律,通过土体的流量Q可以表达为:

    Figure 1.  Infiltration Analysis in a Layered Slope

    ((1))

    式中:i为土层的总水力梯度;yj为第j层土的厚度;kj为第j层土的渗透系数;A为渗流的土体断面积。

    根据连续方程,流量Q也可按下式计算:

    ((2))

    式中:nk为第k层土的孔隙度;sk为第k层土的饱和度净增量;nksk为第k层土中的含水量的变化量;tk为第k层土中的入渗时间。

    垂直于斜坡坡面的水力梯度i可按下式计算

    ((3))

    综合式(1)、(2)、(3),可得成层土中降雨入渗深度的控制方程为:

    ((4))
  • 在很多情况下,浅层滑坡是在双层土体中发生的[8]。双层土斜坡中降雨入渗可分为两个阶段:(1)雨水在第一个土层中入渗,此时湿润锋位于第一层土中;(2)第一层土全部饱和,雨水入渗至第二层,此时湿润锋位于第二层土中。第一种情况与Chen和Young[9]中研究的问题相同,即为倾斜均质土层中的降雨入渗问题。本文重点研究降雨入渗到第二层土体中的情况。令m=2,由式(4)可得:

    ((5))

    根据质量守恒定律,累积入渗量F可按下式计算:

    ((6))

    将式(6)代入(5)中,替换掉参数y2得到累积入渗量与降雨历时的关系式:

    ((7))

    其中:

    式(7)给出了第二层土中产生积水后入渗率与累计入渗量之间的关系。令tp2代表斜坡第二层土体表面产生积水的时刻、Fp2代表第二层土表面产生积水时的累计入渗量。假设第二层土中产生积水前降雨入渗速率为qcosα,则tp2Fp2/q cos α。根据方程(7),刚刚产生积水时累积入渗量Fp2与入渗率的关系为:

    ((8))

    整理得:

    ((9))

    对式(7)进行积分,并代入初始条件t2tp2时,FFp2,得到入渗至第二层土层中降雨时间与累积入渗量的关系为:

    ((10))
  • 令式(10)中α= 0,累积入渗量与降雨时间的关系为:

    ((11))

    式(11)与文[8]中给出的水平双层地面降雨入渗分析的解析解表达式相同。

  • 为进一步对本文提出的方法进行验证,本节将对本文方法计算所得的孔隙水压力分布与Richards方程求解的孔隙水压力分布进行比较。算例中斜坡坡角取α=30°,土体的水土特征曲线采用文献中常用的Van Genuthen模型[11]

    ((12))
    ((13))

    式中:θ为体积含水量;Θ为相对含水量;αmn为曲线拟合参数;h为压力水头。当m=1-1/n时,对应于上述水土特征曲线的渗透系数方程可按下面方程计算[11]

    ((14))

    式中:ks为土体饱和渗透系数。

    在Green-Ampt模型中,输入的水力参数为湿润锋以上土体的渗透系数及湿润锋处的基质吸力。研究表明,Green-Ampt模型中渗透系数可取为土体饱和渗透系数的0.7倍[12]。湿润锋基质吸力可基于渗透系数方程按下式计算[13]

    ((15))

    式中:s为基质吸力;si为降雨前土体中的初始吸力。

    算例中土体参数见表1。假设斜坡承受的降雨强度为q=1.25×10-6 m/s,土体中初始吸力为20 kPa。取第一层土层厚度y1=0.5 m,第二层厚度y2=1.0 m。本例中Richards方程采用Seep/W软件求解。

      Qr Qs a/(cm-1) n ks/(m/s) c/kPa φ
    第一层土 0.034 0.45 0.02 1.41 1.25×10-6 4 15
    第二层土 0.067 0.46 0.016 1.37 6.94×10-7 6 21

    Table 1.  Soil Parameters

    图2(a)~(d)给出了不同降雨时刻本文推导的Green-Ampt入渗模型和Richards方程预测的孔隙水压力分布对比图。从图中可以看出,Richards方程计算所得的孔隙水分布可分为三个区域:饱和区、未受降雨影响的非饱和区、以及位于两者之间的过渡区。在不同降雨历时下,由Green-Ampt模型计算的孔隙水压力一直位于Richards方程计算所得的孔隙水压力分布的过渡区域内。在第二层土体表面,Richards方程预测结果中出现了约2kPa的正孔隙水压力。在Green-Ampt模型中,湿润锋以上孔隙水压力均为零。总体而言,Green-Ampt模型计算所得的孔隙水压力的分布与Richards方程计算结果类似。

    Figure 2.  Comparison of Pore Water Pressure Predicted by the suggested Model and by Richards' Equation

  • 本文采用Green-Ampt模型计算降雨条件下的孔隙水压力分布,采用极限平衡方法计算出边坡的安全系数。根据Fredlund等[14],降雨条件下无限体斜坡的安全系数可按下式计算:

    ((16))

    式中:c为有效粘聚力;φ为有效内摩擦角;zf为滑动面沿重力方向距地表的深度(见图1);ua为孔隙气压力;σn为滑动面上总的法向应力,其值为σnγtzfcos^2αuw为孔隙水压力;φb为与基质吸力相关的内摩擦角;ua-uw为基质吸力;rt为土的重度;zf为湿润锋处的入渗深度。

    在匀质土层中,最危险滑动面常位于湿润锋处[3]。因此,在湿润锋位于第一层土体中时,最危险滑动面位置可按湿润锋位置计算。在双层土斜坡的稳定性分析中,如果第二层土的强度较第一层土高,最危险滑动面除可能出现在湿润锋位置,还可能出现在两层土体的界面上。因此,当雨水入渗到第二层土中时,应分别取湿润锋位置和第一层土体底部为最危险滑动面计算斜坡的安全系数,取两者的小值作为斜坡的安全系数。当最危险滑动面在湿润锋位置处时,基质吸力为ua-uwsfγw。当吸力水平较低时,φbφ[14]。由于湿润锋处基质吸力较低,本文假定φbφ。将上述关系带入式(16),可得湿润锋处安全系数的计算表达式为:

    ((17))
  • 下面以2.2节中研究的双层土斜坡为例对其稳定性的影响因素进行分析。土体的强度参数如表1所示。

  • 假设降雨强度q=1×10-6m/s,图3给出了安全系数随降雨时间的变化曲线。由图3可知,随着降雨时间的增加,湿润锋位置逐渐下移,安全系数随着也慢慢减小。当降雨历时达到27 h后,雨水入渗至第二层土体。由于下层土强度较高,此时最危险滑动面位于第一层土体的底部,因此斜坡安全系数维持不变。当雨水入渗深度足够大时,最危险滑动面重新位于湿润锋位置处,此时安全系数将随着入渗深度的增加再次增加。在降雨历时72 h内,边坡安全系数始终大于1.0,不会发生斜坡失稳。

    Figure 3.  Variation of Factor of Safety Under Rainfall with Different Intensities

  • 为研究降雨强度的影响,图3分别给出了降雨强度分别为1.0×10-6 m/s、1.5×10-6 m/s、3.0×10-6 m/s条件下安全系数与降雨历时的关系。由图可知,不同降雨强度下安全系数随降雨时间的变化规律类似:即在降雨初期,安全系数随着降雨历时的增加而减小;一定时间后,安全系数维持不变。如前所述,这是因为此时最危险滑动面的位置位于第一层土的底部,其不随入渗深度的增加而增加。图4还表明,不同降雨强度下安全系数下降的速度不同,安全系数下降的速度随降雨强度的增加而增加。

  • 为研究坡角的影响,图5给出了边坡坡角分别为25°、30°、35°、降雨强度为q=1.0×10-6 m/s条件下安全系数随降雨历时的变化关系。由图可知,在研究的坡角变化范围内,不同坡角条件下安全系数随降雨时间的变化趋势类似;但坡角越大,边坡安全系数下降的速度越快。因此,坡度更大的斜坡在降雨条件下可能更容易失稳。

    Figure 5.  Variation of Factor of Safety with Time of Slopes with Different Slope Angles

  • 本文推导了适用于双层土斜坡的Green-Ampt降雨入渗分析模型,并给出了双层土斜坡中累计入渗量与降雨时间之间的解析表达式。算例表明:双层土斜坡中本文模型预测的孔隙水压力分布与Richards模型预测结果类似。在此基础上,基于极限平衡法提出了双层土斜坡的安全系数计算方法。研究表明:随着降雨时间增加,湿润锋位置逐渐下移,安全系数随着也逐渐减小。当湿润锋进入下层土体且下层土强度较高时,最危险滑动面将位于第一层土体底部,在一段时间内安全系数不随时间发生变化。但当雨水入渗深度足够大时,最危险滑动面重新位于湿润锋位置,此时安全系数将随入渗深度的增加再次增加。此外,斜坡安全系数降低的速率随着降雨强度和斜坡坡度的增加而增加,因而在相同条件下高强度降雨和坡度较陡斜坡更为危险。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return