• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 5 Issue 1
Jul.  2020
Turn off MathJax
Article Contents

Linxia GUO, Youjun GONG. Electric Field Distribution of AC Transmission Lines Considering Vertical Sag[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 103-106. doi: 10.16516/j.gedi.issn2095-8676.2018.01.017
Citation: Linxia GUO, Youjun GONG. Electric Field Distribution of AC Transmission Lines Considering Vertical Sag[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 103-106. doi: 10.16516/j.gedi.issn2095-8676.2018.01.017

Electric Field Distribution of AC Transmission Lines Considering Vertical Sag

doi: 10.16516/j.gedi.issn2095-8676.2018.01.017
  • Received Date: 2017-01-10
  • Rev Recd Date: 2017-02-05
  • Publish Date: 2018-03-25
  • In order to study the actual ground electric field distribution under the AC transmission line, the influence of the height of the conductor to the ground on the electric charge and the electric field was analyzed. The results show that: The influence of the height of the conductor to the ground has little effect on the electric charge; The influence of the height of the conductor to the ground electric field is very large under the condition that the charge quantity is unchanged. Therefore, under the assumption that the height has no influence on the charge of the conductor, considering the arc shape of the conductor, the actual electric field under AC transmission line was solved by the differential vector superposition method and the electric field distribution under UHV AC transmission line was taken an example for the calculation and verification. The analysis results show that the high field range below the line only exists near the middle span and the electric field intensity decreases rapidly with the distance away from the midspan which is very different with the ground electric field distribution calculated by the minimum height. The research results have important guiding significance for the judgment of the house demolition.
  • [1] 张殿生. 电力工程高压送电线路设计手册 [M]. 北京:中国电力出版社,2004.
    [2] 李倩,刘俊翔. 交直流同走廊输电线路地面电场研究 [J]. 南方能源建设,2016,3(增刊.1): 107-111.

    LI Q, LIU J X. Research on the total electric field under HVAC- HVDC ajacent-tower hybrid transmission lines [J]. Southern Energy Construction,2016,3(Supp.1): 107-111.
    [3] 粟福珩. 高压输电的环境保护 [M]. 北京:水利电力出版社,1989.
    [4] 中华人民共和国住房和城乡建设部,中华人民共和国质量监督检验检疫总局. 1 000 KV架空输电线路设计规范,GB 50665—2011 [S]. 北京:中国计划出版社,2011.
    [5] 刘振亚. 特高压交流输电工程电磁环境 [M]. 北京:中国电力出版社,2008.
    [6] 罗永吉,龚有军. 同塔双回输电线路工频电场强度抑制措施 [J]. 南方电网技术,2010,04(5): 75-78.

    LUO Y J, GONG Y J. Restrain Measurement of power frequency electric field under double-circuit transmission line [J]. Southern Power System Technology,2010,4(5): 75-78.
    [7] 黄道春,阮江军,文武,等. 特高压交流输电线路电磁环境研究 [J],电网技术,2007,31(1): 6-11.

    HUANG D C, RUAN J J, WEN W,et al. Study on electromagnetic environment of UHV AC transmission lines [J]. Power System Technology,2007,31(1): 6-11.
    [8] 马信山,张济世,王平. 电磁场基础 [M]. 北京:清华大学出版社,1995.
    [9] 邵天晓. 架空输电线路的电线力学计算 [M]. 北京:中国电力出版社.
    [10] 中华人民共和国住房和城乡建设部,中华人民共和国质量监督检验检疫总局. 110 kV~750 kV架空输电线路设计规范:GB 50545—2010 [S]. 北京:中国计划出版社,2010.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(6)  / Tables(2)

Article Metrics

Article views(407) PDF downloads(24) Cited by()

Related

Electric Field Distribution of AC Transmission Lines Considering Vertical Sag

doi: 10.16516/j.gedi.issn2095-8676.2018.01.017

Abstract: In order to study the actual ground electric field distribution under the AC transmission line, the influence of the height of the conductor to the ground on the electric charge and the electric field was analyzed. The results show that: The influence of the height of the conductor to the ground has little effect on the electric charge; The influence of the height of the conductor to the ground electric field is very large under the condition that the charge quantity is unchanged. Therefore, under the assumption that the height has no influence on the charge of the conductor, considering the arc shape of the conductor, the actual electric field under AC transmission line was solved by the differential vector superposition method and the electric field distribution under UHV AC transmission line was taken an example for the calculation and verification. The analysis results show that the high field range below the line only exists near the middle span and the electric field intensity decreases rapidly with the distance away from the midspan which is very different with the ground electric field distribution calculated by the minimum height. The research results have important guiding significance for the judgment of the house demolition.

Linxia GUO, Youjun GONG. Electric Field Distribution of AC Transmission Lines Considering Vertical Sag[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 103-106. doi: 10.16516/j.gedi.issn2095-8676.2018.01.017
Citation: Linxia GUO, Youjun GONG. Electric Field Distribution of AC Transmission Lines Considering Vertical Sag[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 103-106. doi: 10.16516/j.gedi.issn2095-8676.2018.01.017
  • 输电线路下方空间场强的传统计算方法一般将导线等效为平行于地面的无线长导体,导线对地高度按照最大弧垂情况下对应的最小对地高度计算[1,2]。这样的计算处理虽然使得地面电场强度的计算方法变得简单,但是计算得到的电场强度却仅对档距中央有效[1]。同时,若全线均按照最小对地高度计算地面电场强度,则扩大了高场强范围,导致拆迁范围扩大[4],给输电线路建设增加不必要的经济成本与社会成本。因此,有必要对输电线路下方的电场强度计算方法进行进一步探讨。

  • 交流特高压同塔双回输电线路的塔头示意图及导地线的挂点坐标(其中,纵坐标为导地线的平均对地高度)如表1所示。导线结构采用8×LGJ-630/45,分裂间距450 mm,导线弧垂20 m,最小对地高度21 m;地线为两根JLB20A-185[2]

    塔头示意图 挂点位置 挂点坐标
    左侧上导线 (-17.9,70.77)
    左侧中导线 (-20.0,48.87)
    左侧下导线 (-19.0,27.67)
    右侧上导线 (17.9,70.77)
    右侧中导线 (20.0,48.87)
    右侧下导线 (19.0,27.67)
    左地线 (-23.1,88.34)
    右地线 (23.1,88.34)

    Table 1.  Coordinate of phase conductor and ground wire m

  • 在导线布置方式、分裂数、分裂间距、相序排列等参数确定的基础上,导线弧垂对地面电场强度影响主要包括如下两方面:(1)不同位置处,导线对地高度通过对地电容影响电荷量;(2)不同位置处的电荷由于对地高度不同影响地面电场强度[2]

  • 一般采用[Q]=[P]-1[U]求解多导体线路中导线上的电荷矩阵[Q]。其中,[P]为电位系数矩阵,[U]为电压矩阵。在[U]确定的情况下,电位系数矩阵[P]决定了导线上的电荷。由电位系数的计算公式可知,在导线结构(导线直径、分裂数、分裂形状及分裂间距)不变的情况下,只有导线对地高度变量h影响电位系数的取值。

    根据表1图1所述的线路参数,计算了相导线A1、B1、C1、A2、B2、C2所带电荷随导线对地高度的变化,如图2所示。可见,随着导线最小对地高度从21 m增加至41 m,上层横担的导线电荷几乎没有变化,中层横担的导线电荷增加了约0.5%,下层横担的导线电荷减少了约2.21%。总体来看,在规程规范允许的对地高度范围内,导线对地高度对导线电荷的影响很小。

    Figure 1.  Phase arrangement

    Figure 2.  The Influence of the height of the conductor on the charge

  • 同样,以表1图1所述特高压线路参数为例,计算导线对地高度对地面电场强度的影响,如图3所示。导线最小对地高度从20 m升高到35 m,最大地面电场强度由8.46 kV/m降至3.49 kV/m,线下电场强度大于4 kV/m的范围从86.2 m骤降为0 m。因此导线对地高度对地面电场强度影响很大[6],这主要是因为电场与距离的平方成反比的缘故。

    Figure 3.  The Influence of the height of the conductor to ground on the electric field intensity

  • 根据第2.1节的分析,导线对地高度对导线电荷量的影响很小。而第2.2节的分析表明,导线对地高度对地面电场强度的影响很大。综上可知,对地高度主要通过电荷与计算点的距离来影响地面电场强度的大小。因此,在计算考虑导线弧垂情况下的地面电场强度时,可引入如下假设:

    1)不考虑对地高度变化对导线电荷量的影响;

    2)电荷在导线(呈悬链线形状)上均匀分布。

  • 根据电磁场理论,线电荷的电场强度可按式(1)计算[2]

    ((1))

    式中:ε0为真空介电常数;r为电荷与计算点的距离,m;τ为线电荷密度,C/m;r0为电荷与计算点之间的单位距离矢量,dl为线长微分。

    根据微分原理,线长微分dl见式(2)所示。

    ((2))

    因此,弧垂线下方的电场强度可如式(3)表示。

    ((3))

    图4所示,当原点选取在弧垂最低点时,输电线路的悬链线方程可如式(4)表示[2]

    Figure 4.  Schematic of conductor sag

    ((4))

    式中:σ0为导线弧垂最低点的水平应力,N·mm-2γ为导线比载,N·m-1·mm-2

    因此,悬链线下方的电场强度可按式(5)计算。

    ((5))

    转换为微分表达式,如式(6)所示。

    ((6))

    式中:n为导线分段数;xi为第i段导线中点的X坐标;ri为第i段导线中点与空间需要计算电场强度的某点的距离;r0ri的单位矢量。

  • 据第一章所述线路参数及第三章所述计算方法,计算得到交流特高压同塔双回输电线路在图1所示相序排列方式下的地面电场,如图5,图6所示。可看出:输电线路下方的电场强度在档中最大,在铁塔附近最小;在设计中以10 kV/m为控制条件时,只是在线路档中附近小范围区域内的电场强度大于9 kV/m,其余区域的电场强度则要小得多。

    Figure 5.  The Actual electric field on the ground in the reverse phase sequence arrangement (two-dimensional view)

    Figure 6.  The Actual ground electric field under the different phase sequence arrangement (two-dimensional view)

    采用不同计算方法得到的最大地面电场强度值如表2所示。计算结果表明,考虑弧垂计算得到的线下最大地面电场强度较不考虑弧垂计算得到的线下最大电场强度要大0.97%~1.11%。这主要是前者采用了弧长积分,总电荷较后者得到的总电荷要略多的缘故。

    相序 考虑弧垂/(kV·m-1) 不考虑弧垂/(kV·m-1) 差别/%
    逆相序 9.34 9.25 0.97
    异相序 9.75 9.64 1.11

    Table 2.  Comparison of ground maximum electric field intensity

  • 本章主要研究了考虑导线弧垂情况下的地面电场计算方法并对计算结果进行了分析,得到相关结论如下:

    1)导线弧垂对导线电荷量影响很小,对地面电场强度的影响很大。

    2)线路下方的高场强范围只在导线档中附近存在。远离档中区域,地面电场强度迅速下降。在评估地面最大电场强度区域以及高场强区域时,应充分考虑导线弧垂的影响。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return