• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 5 Issue 3
Jul.  2020
Turn off MathJax
Article Contents

Haizhe LIU, Liang TIAN. Quantitative Analysis on the Constraint Relationship Between the Control Quality of Throttle Pressure and the Variation of Fuel Quantity[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 48-55. doi: 10.16516/j.gedi.issn2095-8676.2018.03.007
Citation: Haizhe LIU, Liang TIAN. Quantitative Analysis on the Constraint Relationship Between the Control Quality of Throttle Pressure and the Variation of Fuel Quantity[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 48-55. doi: 10.16516/j.gedi.issn2095-8676.2018.03.007

Quantitative Analysis on the Constraint Relationship Between the Control Quality of Throttle Pressure and the Variation of Fuel Quantity

doi: 10.16516/j.gedi.issn2095-8676.2018.03.007
  • Received Date: 2017-06-06
  • Rev Recd Date: 2017-09-20
  • Publish Date: 2018-09-25
  •   [Introduction]  The large-scale grid connected of renewable energy represented by wind power results in frequent changes of generation load command in the thermal power unit. The debugging of coordinated control system parameters cannot satisfy the control quality of throttle pressure and the variation of the fuel quantity simultaneously.  [Method]  Based on the simple first order inertial object, adding the integral, pure delay and non minimum phase characteristics in turn, the constraint relation between the adjustment time of the typical objects and the maximum output of the controller was summarized gradually.  [Result]  Combined with the model of the boiler fuel quantity and the throttle pressure in the case of closed-loop control of the turbine-side in coordinated control system for thermal power unit, a formula is presented to describe the constraint relationship between the change of throttle pressure and fuel quantity under the disturbance of generation instruction.  [Conclusion]  The simulation results and actual operation data verify the accuracy of the formula which can meet the practical requirements.
  • [1] 李铁松,刘甲利,庄明振. 基于多代理的虚拟电厂协调优化调度策略研究 [J]. 广东电力,2016,29(8): 32-37.

    LI T S, LIU J L, ZHUANG M Z. Research on coordinated and optimized dispatching strategy for virtual power plant based on multi-agent system [J]. Guangdong Electric Power,2016,29(8): 32-37.
    [2] 王伟,徐婧,赵翔,等. 中国煤电机组调峰运行现状分析 [J]. 南方能源建设,2017,4(1): 18-24.

    WANG W, XU J, ZHAO X,et al. Analysis on peak load regulation status quo for coal-fired power plants in China [J]. Southern Energy Construction,2017,4(1): 18-24.
    [3] 刘吉臻,曾德良,田亮,等. 新能源电力消纳与燃煤电厂弹性运行控制策略 [J]. 中国电机工程学报,2015,35(21): 5385-5394.

    LIU J Z, ZENG D L, TIAN L,et al. Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems [J]. Proceedings of the CSEE,2015,35(21): 5385-5394.
    [4] 禤培正,雷佳,华栋,等. 消纳大规模风电的电力系统源荷协同调度 [J]. 广东电力,2016,29(8): 11-16.

    XUAN P Z, LEI J, HUA D, et al. Source-load coordination dispatching for power system considering large-scale wind power accommodation [J]. Guangdong Electric Power,2016,29(8): 11-16.
    [5] 郭颖,吕剑虹,张铁军. 热力过程控制系统多目标优化及其在机炉协调控制中的应用研究 [J]. 热力发电,2008,37(2): 35-42.

    GUO Y, LV J H, ZHANG T J. Study on multi-objective optimization for control system of the thermal process and its application in boiler-tuebine coordinated control [J]. Thermal Power Generation,2008,37(2): 35-42.
    [6] 刘吉臻,王琪,田亮,等. 供热机组负荷-压力简化模型及特性分析 [J]. 动力工程学报,2012,32(3): 192-196+228.

    LIU J Z, WANG Q, TIAN L,et al. Simolified model and characteristic analysis of load-pressure object in heat supply units [J]. Journal of Chinese Society of Power Engineering,2012,32(3): 192-196+228.
    [7] 高爱国,尚勇,康静秋. 提高自动发电控制性能指标的协调控制策略优化与应用 [J]. 热力发电,2012,41(12): 43-47.

    GAO A G, SHANG Y, KANG J Q. Optimization and application of coordination control strategy for improving the agc performance [J]. Thermal Power Generation,2012,41(12): 43-47.
    [8] 滕卫明,王春利,高海东,等. 应用于机炉协调控制的能量平衡与主汽压力调节相结合的控制策略 [J]. 热力发电,2005,34(6): 42-44+6.

    TENG W M, WANG C L, GAO H D,et al. Control strategy of combining energy balance and main steam regulation for coordinated control of turbine and boiler [J]. Thermal Power Generation,2005,34(6): 42-44+6.
    [9] 刘吉臻,邓拓宇,田亮. 负荷指令非线性分解与供热机组协调控制 [J]. 中国电机工程学报,2016,36(2): 446-452.

    LIU J Z, DENG T Y, TIAN L. Nonlinear decomposition of load command and coordinated control for heat supply units [J]. Proceedings of the CSEE,2016,36(2): 446-452.
    [10] 张锐锋,潘华,李小军,等. 制粉系统动态特性对协调控制系统的影响 [J]. 热力发电,2015,44(7): 78-82.

    ZHANG R F, PAN H, LI X J,et al. Influence of dynamic characteristics of pulverizing system on coordinated control system [J]. Thermal Power Generation,2015,44(7): 78-82.
    [11] 刘吉臻,田亮,曾德良,等. 660 MW机组负荷-压力非线性特性的分析 [J]. 动力工程,2005,25(4): 533-536+540.

    LIU J Z, TIAN L, ZENG D L,et al. Analysis on the nonlinearity of load-pressure characteristics of a 660 MW unit [J]. Power Engineering,2005,25(4): 533-536+540.
    [12] 王令存. 电站锅炉燃烧控制系统的优化策略 [D]. 太原:山西大学,2010.

    WANG L C. Boiler combustion control system optimization [D]. Taiyuan:Shanxi University,2010.
    [13] 何同祥,张华磊,李亚军. 300 MW机组DEB协调控制系统优化 [J]. 热力发电,2005(4): 44-46+57-65.

    HE T X, ZHANG H L, LI Y J. Optimization of DEB coordinated control system for 300 MW unit [J]. Thermal Power Generation,2005(4): 44-46+57-65.
    [14] 常太华,宋建锋,田亮. 汽包锅炉给水与负荷-压力耦合特性分析 [J]. 华北电力大学学报(自然科学版),2009,36(5): 56-60.

    CHANG T H, SONG J F, TIAN L. The coupling characteristic analisis of drum-boiler feed water and load-pressure [J]. Journal of North China Electric Power University(Natural Science Edition),2009,36(5): 56-60.
    [15] 张平,赵立,王振华,等. 600 MW机组高压调门典型事故分析及处理 [J]. 中国电业(技术版),2011(12): 41-44.

    ZHANG P, ZHAO L, WANG Z H,et al. Typical accident analysis and treatment for high-pressure control valve in 600 MW power units [J]. China Electric Power(Technology Edition),2011(12): 41-44.
    [16] 张锐锋,李小军,潘华,等. 两种亚临界机组负荷-压力简化模型对比及实验分析 [J]. 中国电力,2015,48(10): 23-27.

    ZHANG R F, LI X J, PAN H,et al. Comparison and experiment analysis of two simplified load-pressure models of subcritical units [J]. Electric Power,2015,48(10): 23-27.
    [17] 卫丹靖,田亮,边防,等. “机跟炉”协调控制系统参数整定规律研究 [J]. 华北电力大学学报(自然科学版),2016,43(6): 91-96.

    WEI D J, TIAN L, BIAN F,et al. Rules of parameters setting for coordinated control system under turbine following boiler mode [J]. Journal of North China Electric Power University(Natural Science Edition),2016,43(6): 91-96.
    [18] 田亮,曾德良,刘鑫屏,等. 500 MW机组简化的非线性动态模型 [J]. 动力工程,2004,24(4): 522-525.

    TIAN L, ZENG D L, LIU X P,et al. A simplified non-linear dynamic model of 500 MW Unit [J]. Power Engineering,2004,24(4): 522-525.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(14)  / Tables(1)

Article Metrics

Article views(505) PDF downloads(413) Cited by()

Related

Quantitative Analysis on the Constraint Relationship Between the Control Quality of Throttle Pressure and the Variation of Fuel Quantity

doi: 10.16516/j.gedi.issn2095-8676.2018.03.007

Abstract:   [Introduction]  The large-scale grid connected of renewable energy represented by wind power results in frequent changes of generation load command in the thermal power unit. The debugging of coordinated control system parameters cannot satisfy the control quality of throttle pressure and the variation of the fuel quantity simultaneously.  [Method]  Based on the simple first order inertial object, adding the integral, pure delay and non minimum phase characteristics in turn, the constraint relation between the adjustment time of the typical objects and the maximum output of the controller was summarized gradually.  [Result]  Combined with the model of the boiler fuel quantity and the throttle pressure in the case of closed-loop control of the turbine-side in coordinated control system for thermal power unit, a formula is presented to describe the constraint relationship between the change of throttle pressure and fuel quantity under the disturbance of generation instruction.  [Conclusion]  The simulation results and actual operation data verify the accuracy of the formula which can meet the practical requirements.

Haizhe LIU, Liang TIAN. Quantitative Analysis on the Constraint Relationship Between the Control Quality of Throttle Pressure and the Variation of Fuel Quantity[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 48-55. doi: 10.16516/j.gedi.issn2095-8676.2018.03.007
Citation: Haizhe LIU, Liang TIAN. Quantitative Analysis on the Constraint Relationship Between the Control Quality of Throttle Pressure and the Variation of Fuel Quantity[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 48-55. doi: 10.16516/j.gedi.issn2095-8676.2018.03.007
  • 我国特别是北方地区需要依靠火电机组的调峰调频能力消纳电网用电负荷及风电等不稳定发电方式的的发电负荷扰动[1,2]。电网AGC(自动发电控制)指令的频繁波动已经对火电机组运行稳定性造成了很大的影响。电网颁布实施《两个细则》对火电机组发电负荷响应能力进行补偿或考核,力度之大已经能够显著地影响电厂经济效益。火电机组需要在发电负荷响应性能和自身运行稳定性之间进行取舍[3,4,5]。火电机组机炉协调控制系统结构比较复杂,被控参数为发电负荷、汽轮机前主蒸汽压力,控制输出为锅炉燃料量和汽轮机调阀开度。在被控对象结构及参数确定的情况下,燃料量和汽轮机调阀开度的变化幅度同发电负荷、机前压力的控制品质之间存在矛盾。即在变负荷工况下,不可能同时实现发电负荷、机前压力控制品质好,燃料量和汽轮机调阀开度变化幅度小的目标。调节过程中燃料量大幅波动会导致给煤机、磨煤机、一次风机等执行机构大幅动作,也会导致炉膛压力、氧量、过热/再热汽温、水位或中间点温度、NOx生成量等安全经济指标参数大幅波动;汽轮机调阀开度大幅变化会使高压油动机大幅快速动作并使汽轮机振动、推力、胀差等参数劣化[6,7,8,9]

    从控制的角度分析,这本质上属于执行机构动作幅度与被控参数控制指标之间的多目标优化问题。文献[10]定性描述了火电机组协调控制系统机前压力的控制品质和燃料量的波动幅度与锅炉制粉系统动态特性之间存在特定的约束关系。文献[11,12]分析了受汽包锅炉蓄热影响下的燃料量变化幅度与机前压力控制效果之间的关系。文献[13]分析某机组为提高AGC速率,给煤量变化幅度增加运行人员频繁启停磨煤机,经常引起汽包水波动而退出CCS(协调控制方式)的故障。文献[14]利用能量及质量守恒定律建立了给水流量-锅炉燃料量-汽轮机调门开度与机组负荷-机前压力之间的三入二出动态模型,分析了机前压力受给水流量变化影响的机理和程度。文献[15]分析某600 MW机组因过分追求发电负荷调节快速性导致汽轮机高调门故障的案例。

    现场优化协调控制系统参数过程中,往往需要在减小汽轮机蒸汽压力波动幅度或减小锅炉燃料量波动幅度之间进行反复的权衡。论文针对亚临界机组,依据对象简化非线性动态模型推导机侧控制回路闭环情况下燃料量对机前压力的传递函数,通过分析传递函数中各组成部分的特性,直接定量给出描述控制燃料量变化幅度与汽轮机前蒸汽压力变化幅度间关系计算公式,并通过仿真实验和现场调试对公式的合理性进行验证。

  • 以典型亚临界机组为例进行分析,其对象模型结构为[16,17,18]

    ((1))
    ((2))
    ((3))
    ((4))
    ((5))

    式中:模型输入变量包括:uB锅炉总燃料量(t/h);uT汽轮机调阀开度(%);输出变量包括:pt汽轮机前压力(MPa);NE机组发电功率(MW);中间变量包括:rB炉膛内燃烧的瞬时燃料量(t/h);rM进入磨煤机的煤量(t/h);pd锅炉汽包压力(MPa)。模型静态参数物理意义为:K1燃料增益;K2过热器压降系数;K3汽轮机增益;动态参数为:τ制粉系统延迟时间(s);Tf制粉系统惯性时间(s);Cb锅炉蓄热系数(MJ/MPa);Tt汽轮机惯性时间(s)。

    为了保证AGC及一次调频性能,火电机组多采用以炉跟机方式为基础的协调控制系统,即通过锅炉燃料量控制汽轮机前压力,通过汽轮机调阀开度控制机组发电功率。由于汽轮机侧被控对象惯性较小,汽轮机侧控制器的参数整定比较简单,机侧控制回路能够很好地保证发电负荷跟随发电负荷指令变化。由于被控对象具有大惯性、大迟延等特性,锅炉侧控制器参数是协调控制系统调试的难点。当汽轮机侧控制回路形成闭环后,锅炉侧等效被控对象结构如图1[17]所示,其中控制输入为uB,被控参数为pt,扰动输入为NESP

    Figure 1.  Equivalent controlled object of the turbine-side with open-loop control of the boiler-side

    为了定量分析机前压力控制品质与燃料量波动幅度之间的关系,需要确定汽轮机侧控制回路形成闭环、锅炉侧控制回路开环情况下uBpt的传递函数。文献[17]推导出传递函数形式为:

    ((6))

    式(6)所示的传递函数结构比较复杂,因此先从简单对象着手,直接通过传递函数定量分析控制输入与被控参数之间的变化的对应关系。

  • 首先分析简单一阶惯性对象采用线性控制器时,控制输入变化幅度与被控参数控制品质之间的对应关系。

    当采用开环前馈控制时,被控对象传递函数如式(7),控制器传递函数如式(8),当控制器的零点和被控对象的极点对消时,整个系统可等效成为一个一阶惯性环节,则被控参数的动态响应特性仅取决于控制器的极点。理论上可以通过设定控制器的极点来设置被控参数的调节时间。

    ((7))
    ((8))
    ((9))

    式中:Gp(s)为被控对象传递函数;Gkc(s)为开环系统控制器传递函数;G(s)为等效后系统的传递函数;T为一阶系统的时间常数(s);s是拉氏变换复变量;n是可调参数,可设控制器的极点。

    在阶跃输入情况下,一阶惯性对象的调节时间约为对象惯性时间的4倍。对于本控制系统,调节时间为4T/n。期望的调节时间越短,则n的取值越大。对式(8)变形如式(9),可看出其阶跃输入时的最大输出为n。这意味着,对于本系统调节时间越短,所需的最大调节输出越大。

    图2(a)所示,当调节时间为4T时,控制器输出的最大调节量恰好等于使被控参数达到期望值所需的调节量;如图2(b)所示,当调节时间缩短为2T时,控制器输出的最大调节量变为使被控参数达到期望值所需的调节量的2倍。

    Figure 2.  Linear control simulation curve of first order inertial system

    经过以上的分析可以归纳出,对于一阶惯性对象采用线性控制时,控制器输出的最大调节量和调节时间之间遵循以下约束关系:

    ((10))

    式中:Ocmax为控制器输出的最大调节量;tsp为一阶惯性对象的控制系统的调节时间。

    采用闭环反馈控制时,控制系统结构如图3所示。

    Figure 3.  Closed-loop control system of first order inertial object

    Gcc(s)采用式(11)描述的PI控制器、式(12)描述的参数时,控制系统闭环传递函数同式(9)描述的开环前馈控制的传递函数相同。式(12)给出的控制器参数的控制效果完全能够满足实际需要。说明对于闭环控制系统,在合理整定控制器参数的情况下,控制系统最大调节量和调节时间之间的约束关系依然成立。

    ((11))
    ((12))

    式中:Gcc(s)为闭环控制系统PI控制器的传递函数;KP为比例系数;TI为积分系数。

  • 一阶惯性加积分对象传递函数为:

    ((13))

    参考图3,对一阶惯性对象的闭环控制系统进行等效处理,在控制器侧增加一个理想微分环节,在被控对象侧增加一个纯积分环节,如图4所示。这样实际被控对象由一阶惯性对象变为一阶惯性加积分对象,而控制器侧由于增加了微分环节,仅各项参数的物理意义发生变化,但整个系统的传递函数并未发生变化。控制器的微分作用对应比例作用,比例作用对应积分作用。

    Figure 4.  Closed-loop control system of first order inertial with integral object

    同理,在控制器后增加一个微分环节并不会改变式(10)所描述的控制器输出的最大调节量和调节时间之间的约束关系。对比图2,一阶惯性加积分对象的控制曲线如图5所示。

    Figure 5.  Linear control simulation curve of first order inertial with integral system

  • 参考一阶惯性对象的分析思路。纯迟延对象传递函数为:

    ((14))

    对于一个因果的系统,经典控制理论无法用一个超前环节去抵消对象的纯迟延,采用开环前馈控制时,能够实现的调节速度最快的控制器为单位增益环节。采用线性控制时最优的控制效果如图6所示。

    Figure 6.  Linear control simulation curve of pure delay system

    对于闭环反馈控制系统,采用图7所示控制系统结构,能够获得同开环前馈控制相同的控制效果。这时控制器的参数为:

    Figure 7.  Closed-loop control system of pure delay object

    ((15))

    可以得到结论:纯迟延对象无法通过设置控制器参数改变控制系统的调节时间,同时也不需要在控制器输出侧施加动态过调量,即控制器输出的最大调节量同静态调节量相同。

  • 最简单的非最小相位对象对象传递函数为:

    ((16))

    采用开环前馈控制时,由于非最小相位被控对象在s平面上存在一个右半平面的零点,理论上需要控制器采用一个右半平面的极点进行对消。但s平面上存在右半平面极点的控制器自身是不稳定的,实际上无法应用。同纯迟延特性类似,经典控制理论无法克服非最小相位特性的影响。能够实现的控制系统传递函数为:

    ((17))

    控制效果如图8所示。

    Figure 8.  Linear control simulation curve of non minimum phase system

    对于闭环反馈控制系统,采用图9所示控制系统结构,能够获得同开环前馈控制相同的控制效果。这时控制器的参数为:

    Figure 9.  Closed-loop control system of non minimum phase object

    ((18))

    可以得到结论:非最小相位对象可分解为一阶惯性环节和一个右半平面的零点环节。右半平面的零点不进行处理,而一阶惯性环节依然遵循前文所述的最大调节量和调节时间之间的约束关系。

  • 对象传递函数为:

    ((19))

    采用开环前馈控制时,能够实现的控制系统传递函数为:

    ((20))

    控制效果如图10所示。

    Figure 10.  Linear control simulation curve of non minimum phase with pure delay system

    对于闭环反馈控制时,控制系统结构如图11所示。

    Figure 11.  Closed-loop control system of non minimum phase with pure delay object

    当控制器采用式(21)的参数时,可获得同开环前馈控制相同的控制效果。

    ((21))

    可以得到结论:非最小相位加纯迟延对象纯迟延部分造成的调节时间的增加无法也不需要依靠控制器输出加动态过调量来弥补,非最小相位部分的调节时间和最大调节量时间的约束关系同一阶惯性环节相同。

  • 根据前文得到的结论,对于式(6)有:

    ((22))

    式中:ts为控制系统的响应时间(s)。

    对于协调控制系统,由于锅炉侧存在大的惯性和迟延,发电负荷变化初期几乎完全依靠锅炉蓄热来补偿发电功率的变化,锅炉蓄热系数、机前压力与发电负荷之间的关系为:

    ((23))

    将式(22)与式(23)联立,可得:

    ((24))

    式中:δ为负荷变化速率(MW/min);k为系数。

    式(24)即为描述炉跟机协调控制系统机前压力变化幅度与燃料量的变化幅度之间的约束关系的公式。

  • 在MATLAB中依据式(1)~式(5)构建对象模型,设计炉跟机方式的DEB协调控制系统并整定PID控制器参数。一组发电负荷指令扰动下机前压力和燃料量的变化曲线如图12所示。图中发电负荷指令由600 MW以12 MW/min的速率降至500 MW,由于汽轮机侧控制发电负荷调节速度快,实际发电负荷能够很好地跟随负荷指令。

    Figure 12.  The simulation of coordinated control system

    图12中控制系统主要参数和控制品质数据如表1所示。可发现机前压力偏差与燃料调节量之间遵循式(24)描述的约束关系。

    控制作用 锅炉侧PID参数 最大压力偏差/MPa 最大燃料调节量/(t·h-1) k
    KP=55 0.61 55 5.111
    TI=4.67
    KD=4 000
    KP=40 0.72 45 5.045
    TI=6.67
    KD=800
    KP=22 0.91 35 4.883
    TI=33.3
    KD=200

    Table 1.  Simulation parameters of coordinated control system

  • 研究对象为DTPS电厂600 MW机组。锅炉型号为HG-2030/17.6-4,汽轮机型号为N600-16.7/537/537-I。对象模型如表1所示。

    ((25))
    ((26))
    ((27))
    ((28))
    ((29))

    机组协调控制系统采用炉跟机加AGC指令前馈控制的方案。为了避免前馈控制作用对分析结果产生影响,选择AGC指令不变一次调频动作引起机前压力和燃料量变化时的数据进行对比分析。图13图14显示了锅炉侧控制器采用较强和较弱的控制作用时调节效果的对比,在发电功率变化幅度约10 MW时,图13压力波动幅度为0.18 MPa,燃料量波动幅度为7.3 t/h,压力控制效果好但燃料量波动幅度大;而图14压力波动幅度为0.39 MPa,燃料量波动幅度为4.3 t/h,燃料量波动幅度小但压力控制效果差。数据近似遵循式(24)描述的约束关系。

    Figure 13.  Control result of strong control effect

    Figure 14.  Control result of weak control effect

  • 通过理论分析、仿真分析和现场调试得到以下结论:

    1)给出描述包含惯性环节常见对象的被控参数的调节时间与控制器输出的最大调节量之间约束关系的公式。为了缩短调节时间,需要增加控制器输出的最大调节量。

    2)对于以炉跟机方式为基础的协调控制系统,给出了描述机前压力变化幅度与燃料量的变化幅度之间的约束关系的公式。两者乘积的大小主要取决与锅炉制粉系统惯性时间。能够为确定参数调试的方向提供决策支持。

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return