• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 6 Issue 3
Jul.  2020
Turn off MathJax
Article Contents

Cong LUO, Xinping LIU. Analysis of Optimal Excess Air Ratio Under Ultra Low Load Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 81-86. doi: 10.16516/j.gedi.issn2095-8676.2019.03.014
Citation: Cong LUO, Xinping LIU. Analysis of Optimal Excess Air Ratio Under Ultra Low Load Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 81-86. doi: 10.16516/j.gedi.issn2095-8676.2019.03.014

Analysis of Optimal Excess Air Ratio Under Ultra Low Load Conditions

doi: 10.16516/j.gedi.issn2095-8676.2019.03.014
  • Received Date: 2018-11-11
  • Rev Recd Date: 2019-01-04
  • Publish Date: 2020-07-11
  •   [Introduction]  In order to analyze the influence of excess air coefficient on the combustion stability of the furnace under the ultra-low load operation conditions of the thermal power unit, the unit is better guided to participate in peak shaving.  [Method]  In this paper, through in-depth analysis of boiler operation and heat transfer mechanism in the furnace, the combustion temperature of the furnace was characterized by the outlet temperature of the furnace, and as the index of combustion stability, the furnace exit smoke temperature model was built in MATLAB/SIMULINK. Taking a 300 MW thermal power generating unit as an example, the paper first selected several typical operating conditions. Then the similarity solving method was used to calculate the furnace exit smoke temperature and compare with the design data given by the boiler manufacturer. Finally the test calculation method was basically correct and then substituted into ultra-low load operation parameters which calculated the furnace exit smoke temperature corresponding to different excess air coefficients under deep peaking conditions.  [Result]  The simulation results show that the model calculates the furnace temperature and the design data given by the boiler manufacturer. The calculation error is less than ±15°C, and the calculation method is basically correct. It can be applied to the calculation of ultra-low load conditions.  [Conclusion]  As the load is reduced, the optimum excess air ratio that maximizes the flue gas temperature at the exit of the furnace is gradually increased. Therefore, under the condition of ultra-low load operation, the excess air coefficient can be appropriately increased within a certain range to increase the flue temperature of the furnace outlet, thereby improving the stability of the combustion of the boiler, and when the excess air ratio is less than 2.0, the value is higher, the temperature is higher.
  • [1] 舒印彪,张智刚,郭剑波,等. 新能源消纳关键因素分析及解决措施研究 [J]. 中国电机工程学报,2017,37(1):1-9.

    SHU Y B,ZHANG Z G,GUO J B,et al. Analysis on key factors of new energy consumption and solutions [J]. Chinese Society for Electrical Engineering,2017,37(1):1-9.
    [2] 陈志刚,刘百成,王田,等. 单系列辅机低负荷运行协调控制及优化 [J]. 热力发电,2016,45(11):120-124.

    CHEN Z G,LIU B C,WANG T,et al. Coordinated control and optimization of single series auxiliary machine with low load operation [J]. Thermal Power Generation,2016,45(11):120-124.
    [3] 章斐然,周克毅,徐奇,等. 燃煤机组低负荷运行SCR烟气脱硝系统应对措施 [J]. 热力发电,2016,45(7):78-83.

    ZHANG F R,ZHOU K Y,XÜ Q,et al. Countermeasures for SCR flue gas denitration system for low-load operation of coal-fired units [J]. Thermal Power Generation,2016,45(7):78-83.
    [4] 司俊山. 300 MW锅炉机组低负荷运行水循环安全性研究 [D]. 保定:华北电力大学(保定),2004.
    [5] 安宏文. 大容量火电机组调峰运行的轴系振动特性分析 [D]. 北京:华北电力大学(北京),2014.
    [6] 刘吉臻,崔泽朋,田亮,等. 基于D-S证据理论的煤粉细度融合诊断 [J]. 热能动力工程,2006,21(4):423-426+440.

    LIU J Z,CUI Z P,TIAN L,et al. Fusion diagnosis of pulverized-coal fineness based on a D-S evidence theory [J]. Journal of Engineering for Thermal Energy and Power,2006,21(4):423-426+440.
    [7] 赵宁,曹洪涛,李晓金,等. 基于O2和CO信号修正的燃烧优化控制 [J]. 电力科学与工程,2004(3):23-25.

    ZHAO N,CAO H T,LI X J,et al. Combustion optimization control based on O2 and CO signal correction [J]. Power Science and Engineering,2004(3):23-25.
    [8] 赵征,刘伟,刘吉臻,等. 基于信息融合的锅炉燃烧优化控制技术 [J]. 动力工程,2009,29(1):53-56.

    ZHAO Z,LIU W,LIU J Z,et al. Boiler combustion optimization control technology based on information fusion [J]. Power Engineering,2009,29(1):53-56.
    [9] 高海东,高林,樊皓,等. 火电机组实用智能优化控制技术 [J]. 热力发电,2017,46(12):2-4.

    GAO H D,GAO L,FAN H,et al. Practical intelligent optimization control technology for thermal power units [J]. Thermal Power Generation,2017,46(12):2-4.
    [10] 王学栋,栾涛,程林,等. 锅炉燃烧调整对NOx排放和锅炉效率影响的试验研究 [J]. 动力工程,2008(1):19-23.

    WANG X D,LUAN T,CHENG L,et al. Experimental study on influence of boiler combustion adjustment on NOx emission and boiler efficiency [J]. Power Engineering,2008(1):19-23.
    [11] 刘彦丰,陈启召,殷立宝,等. O2/CO2与O2/N2气氛下煤粉燃烧NO排放特性试验的研究 [J]. 热力发电,2017,46(4):39-45.

    LIU Y F,CHEN Q Z,YIN L B,et al. Study on NO emission characteristics of pulverized coal combustion under O2/CO2 and O2/N2 atmosphere [J]. Thermal Power Generation,2017,46(4):39-45.
    [12] 张锷,田亮. 变负荷运行对炉内辐射换热影响的机理分析 [J]. 电力科学与工程,2010,26(9):52-55.

    ZHANG E,TIAN L. Mechanism analysis of influence of variable load operation on radiation heat transfer in furnace [J]. Power Science and Engineering,2010,26(9):52-55.
    [13] 李彦梅. 浅析炉膛出口烟温度与锅炉安全运行 [J]. 才智,2010(33):320+292.

    LI Y M. Brief analysis of furnace exit flue gas temperature and safe operation of boiler [J]. Intelligence,2010(33):320+292.
    [14] 谭小平. 锅炉炉膛出口烟温对锅炉性能的影响 [J]. 锅炉制造,2006,2(6):23-24.

    TAN X P. Effect of flue gas temperature at boiler furnace exit on boiler performance [J]. Boiler Manufacturing,2006,2(6):23-24.
    [15] 冯俊凯,沈幼庭,杨瑞昌. 锅炉原理及计算 [M]. 北京:科学出版社,2003.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(4)  / Tables(4)

Article Metrics

Article views(628) PDF downloads(99) Cited by()

Related

Analysis of Optimal Excess Air Ratio Under Ultra Low Load Conditions

doi: 10.16516/j.gedi.issn2095-8676.2019.03.014

Abstract:   [Introduction]  In order to analyze the influence of excess air coefficient on the combustion stability of the furnace under the ultra-low load operation conditions of the thermal power unit, the unit is better guided to participate in peak shaving.  [Method]  In this paper, through in-depth analysis of boiler operation and heat transfer mechanism in the furnace, the combustion temperature of the furnace was characterized by the outlet temperature of the furnace, and as the index of combustion stability, the furnace exit smoke temperature model was built in MATLAB/SIMULINK. Taking a 300 MW thermal power generating unit as an example, the paper first selected several typical operating conditions. Then the similarity solving method was used to calculate the furnace exit smoke temperature and compare with the design data given by the boiler manufacturer. Finally the test calculation method was basically correct and then substituted into ultra-low load operation parameters which calculated the furnace exit smoke temperature corresponding to different excess air coefficients under deep peaking conditions.  [Result]  The simulation results show that the model calculates the furnace temperature and the design data given by the boiler manufacturer. The calculation error is less than ±15°C, and the calculation method is basically correct. It can be applied to the calculation of ultra-low load conditions.  [Conclusion]  As the load is reduced, the optimum excess air ratio that maximizes the flue gas temperature at the exit of the furnace is gradually increased. Therefore, under the condition of ultra-low load operation, the excess air coefficient can be appropriately increased within a certain range to increase the flue temperature of the furnace outlet, thereby improving the stability of the combustion of the boiler, and when the excess air ratio is less than 2.0, the value is higher, the temperature is higher.

Cong LUO, Xinping LIU. Analysis of Optimal Excess Air Ratio Under Ultra Low Load Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 81-86. doi: 10.16516/j.gedi.issn2095-8676.2019.03.014
Citation: Cong LUO, Xinping LIU. Analysis of Optimal Excess Air Ratio Under Ultra Low Load Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 81-86. doi: 10.16516/j.gedi.issn2095-8676.2019.03.014
  • 近年来新能源发电的并网装机容量保持着快速发展的势头,但在我国普遍缺少大规模储能装置的现状下,提高新能源消纳率的有效措施是对火电机组进行深调峰改造[1],使之安全稳定地运行在超低负荷工况下。火电机组超低负荷运行面临着许多问题如辅机单、双侧运行安全切换[2];锅炉脱硝系统因烟温降低难以正常工作[3];锅炉汽水系统循环倍率下降局部管道超温[4];汽轮机偏离设计工况运行金属热应力和缸体轴系膨胀状态变化[5]等,但最为关键的是如何提高超低负荷工况下锅炉燃烧的稳定性。

    燃烧不稳易导致锅炉灭火,进而引起机组主燃料跳闸(MFT),是一种高危险等级的事故。在不改造机组设备的前提下,通过优化可控因素,提高炉内燃烧温度,进而提升锅炉燃烧稳定性是目前较为可行的方案(目前热工控制领域的研究热点)。锅炉结构及燃烧方式与炉内燃烧温度密切相关,但以上属于发电设备的范畴,实际中难以进行调整,但除锅炉结构和燃烧方式之外,煤挥发份、锅炉配风、一次风温度、过量空气系数等因素对燃烧温度也有显著影响[6,7]。特别是过量空气系数,是锅炉中一个重要的可控性的参数,定量分析过量空气系数与燃烧温度的关系,对提升超低负荷工况下锅炉燃烧稳定性具有指导意义[8],本文仅过量空气系数对于炉内燃烧温度的影响进行相关研究。

    目前关于锅炉过量空气系数的研究,主要围绕如何在常规工况下调节过量空气系数以提高锅炉效率和降低NOx生成量两方面。如文献[8,9]利用数据融合技术,对过量空气系数等变量进行信息融合,进而设计了锅炉燃烧优化控制方案。文献[10,11]通过研究锅炉过量空气系数变化与NOx排放量的关系,得到了降低NOx排放量的有效措施。文献[12]依据炉内传热相似理论建立了炉膛出口烟温和炉内辐射换热的数学模型,并分析其过量空气系数之间的关系,但以上研究都是在常规工况下进行的,并未对超低负荷工况下锅炉过量空气系数及其最优点变化特性进行分析。

    本文针对某台计划深调峰运行的机组,首先根据炉内传热相似理论建立机组负荷、过量空气系数等变量与炉膛出口烟温的机理模型,并对锅炉各个设计工况的炉膛出口烟温进行校核计算,验证模型的准确性;然后将该模型应用于超低负荷工况,确定在超低负荷工况下不同负荷对应的最优过量空气系数,进而为机组深调峰提供指导意见。

  • 炉膛出口烟温是锅炉炉膛内燃料燃烧,烟气的流动和烟气相工质传热等三个过程综合作用的结果,通过测量炉膛出口烟温,可以判断炉膛内上述三个过程是否正常,同时炉膛出口烟温是评价燃烧状况的重要指标,对于锅炉性能有直接的影响,炉膛出口烟温低说明炉内燃烧温度低,炉膛内燃料燃烧不充分[13,14]。燃料在锅炉炉膛内燃烧的平均温度介于理论燃烧温度和炉膛出口温度之间,工程上多采用炉膛出口烟温反映燃料燃烧平均温度。

    根据炉内传热相似理论和大量的实验数据归纳可知,大容量锅炉的炉膛出口烟温计算公式为:

    ((1))

    式中:Ta是理论燃烧温度(K);M是火焰中心相对高度;a1是炉膛黑度;ψpj是水冷壁的热有效系数;qH是水冷壁受热面的热负荷(kW/m2)。

    其中:

    ((2))

    式中:AB为经验系数;对应四角切圆燃烧器、前墙或对冲燃烧器和摆动式燃烧器Δx是火焰最高点的相对位置修正值,分别取0、0.05-0.1和0.1;xr为燃烧器的相对高度,用式(3)表示:

    ((3))

    式中:h1是炉膛高度,为从炉底至炉膛出口烟囱高度(m);hf为为燃烧器的高度(m);对于多层布置的燃烧器,燃烧器高度表示为:

    ((4))

    式中:ni为第i排燃烧器的个数;bi为第i排燃烧器的燃料耗量;hfi为第i排燃烧器的布置高度(m)。

    根据传热学灰体有效辐射基本原理,引入水冷壁的热有效系数,同时建立炉膛火焰和壁面换热过程的双灰体模型,可得炉膛灰度的表达式为[15]

    ((5))

    式中:ah为火焰黑度;ψ为水冷壁的热有效系数。

    燃烧不同燃料时,火焰黑度的计算方法不完全一样,但总的说来可以用(6)式计算:

    ((6))

    式中:k为火焰辐射减弱系数;p为炉膛压力(MPa);s代表炉膛辐射层的有效厚度(m)。

    ((7))

    式中:Bj为计算燃料量(kg·s-1);Qa为单位燃料燃烧产物拥有的热量(kJ/kg);F1是炉膛面积(m2)。

  • 以某300 MW亚临界机组为例进行分析,锅炉型号为DG1025/18.2-Ⅱ6,为亚临界参数、一次中间再热、自然循环单汽包、单炉膛、平衡通风,摆动燃烧器四角切圆燃烧,固态排渣煤粉炉,锅炉为全钢构架,全悬吊结构,紧身封闭,整体呈П型布置。锅炉采用由5台HP843型中速磨煤机冷一次风正压直吹式制粉系统,额定负荷下4台运行、1台备用;每台磨煤机出口由四根煤粉管道接至一层燃烧器。

    燃用煤种特性如表1所示,燃用煤种的低位发热量为20.06 MJ/kg,表中Mar、Aar、Car、Har、Oar、Nar和Sar分别为收到基水分、灰分、收到基碳、氢、氧、氮和硫所占的百分比。

    Mar Aar Car Har Oar Nar Sar
    7.00 24.26 53.28 3.45 10.44 0.84 0.69

    Table 1.  Coal quality analysis %

    锅炉的设计参数如表2所示:

    锅炉参数 数值
    炉膛漏风系数 0.01
    制粉漏风系数 0.04
    冷风温度/ ℃ 20
    热风温度/ ℃ 360
    固体损失/% 1.5
    炉膛容积/m3 8 584.30
    飞灰份额 0.90
    炉膛过量空气系数 1.20
    炉宽/m 14.7
    炉深/m 13.7
    有效辐射受热面积/m2 3 390

    Table 2.  The basic parameters of the boiler

    代入锅炉设计数据在不同负荷工况下计算得到炉膛出口烟温同锅炉厂家给出的设计值对比如图1所示。在MATLAB环境下搭建炉膛出口烟温计算模型如图2所示。

    Figure 1.  Furnace temperature comparison

    Figure 2.  Furnace exit smoke temperature calculation model

    炉内传热相似理论是计算锅炉炉膛出口烟温的基本方法,不同的锅炉厂家会根据其设计锅炉的实际情况采取不同的修正计算方法;另外一般情况下的炉膛出口烟温的计算是针对额定负荷工况进行的,在BMCR(锅炉最大连续出力),100%THA(汽耗考核)等工况下具有较高准确性,而在超低负荷工况下是否适用还有待检验。本文采用比标准的炉内传热相似性求解方法,根据实际锅炉尺寸、燃料量等信息,对炉膛出口烟温进行校核计算,对比其同设计值的差异从而检验方法是否适用。

    虽然对于锅炉厂家的炉膛出口烟温的计算方法并不是十分清楚,但是对比MATLAB环境下搭建炉膛出口烟温计算模型所得炉温,其炉温差可以控制在±15 ℃之内,由此可以验证这一套计算方法适用于超低负荷工况下炉膛出口烟温的计算。

  • 从运行规程中可知锅炉运行的最低工况为35%THA工况,此工况下锅炉机组的设计参数如表3所示:

    项 目 数值
    过热蒸汽流量/(t·h-1) 406
    过热蒸汽出口压力/MPa.g 9.49
    过热蒸汽出口温度/ ℃ 541
    再热蒸汽流量/(t·h-1) 357.4
    再热蒸汽进口压力/MPa.g 1.46
    再热蒸汽出口压力/MPa.g 1.38
    再热蒸汽进口温度/ ℃ 314
    再热蒸汽出口温度/ ℃ 527
    给水温度/ ℃ 220
    汽包压力/MPa.g 9.89
    汽包饱和蒸汽温度/ ℃ 311

    Table 3.  Basic parameters of boiler under minimum design load conditions

    锅炉运程中给出最低设计负荷的炉膛出口烟温的相关计算参数如表4所示,由表可知,在最低设计负荷工况下炉膛出口烟温已经达到了相当低的水平,结合图1可进一步证明随着炉膛负荷的降低,炉膛出口烟温会一直降低,这是由于负荷降低伴随着燃料量的减少,烟气热容量减少,炉内平均温度下降,单位燃料在炉内的辐射传热降低,炉膛总传热量降低,从而导致炉膛出口烟温的下降。

    项 目 数值
    一次风速/(m·s-1) 20
    一次风温/ ℃ 70
    二次风速/(m·s-1) 48.95
    二次风温/ ℃ 341
    燃烧器层数/层 2
    给煤器流量/(kg·s-1) 7.5
    炉膛出口烟温/ ℃ 801

    Table 4.  Minimum design load thermal calculation

  • 已知锅炉运行的最低稳燃负荷,用此MATLAB仿真模型进行超低负荷工况下不同过量空气系数对应炉膛出口烟温计算,以20%THA和30%THA工况下为例做出炉温随过量空气系数变化曲线如图3所示。

    Figure 3.  Furnace temperature changes with excess air ratio under ultra-low load conditions

    图3可知,在超低负荷工况下炉膛出口烟温随着过量空气系数的增大而增大,而且由图中曲线斜率可知,负荷越低,过量空气系数对于炉膛出口烟温的影响越大。同时做出炉膛出口烟温在常规负荷工况下随过量空气系数变化的曲线如图4所示。

    Figure 4.  Change of furnace temperature with excess air coefficient under normal load conditions

    图4表明:炉温随着过量空气系数先增大后减小,使炉温水平最高的过量空气数值随着负荷的降低逐渐有略微增大的趋势。笔者在进行超低负荷工况实验时,发现20%THA和30%THA工况下用此炉膛烟温计算模型算得的炉膛出口烟温的最大值落在2.0~2.5之间,但在实际运行过程中,当过量空气系数带入的过量冷空气成为影响炉内燃烧状况的主导因素,由于过量冷空气的带入会使炉内燃烧温度降低,在现场进行实际操作时时一般将过量空气系数的一般取值为1.0~1.5之间,故在本文中暂不给出过量空气系数大于2.0时炉温变化情况。

  • 本文给出了炉膛出口烟温计算的相似性原理及其求解方法,并根据锅炉运行机理,建立了某300 MW火电机组炉膛出口烟温计算模型。利用该模型对超低负荷工况下炉膛出口烟温随机组负荷、过量空气系数变化的动态特性进行仿真,得到如下结论:

    1)通过与机组变负荷工况下炉膛出口烟温的测量数据进行,本文建立的炉膛出口烟温模型误差在±15 ℃,具有较高的准确度。

    2)火电机组在100%~20%THA范围内,随着负荷的下降,使炉膛出口烟温达到极大值的最优锅炉过量空气系数逐渐变大。

    3)在超低负荷运行工况下,通过调节送风量,合理增大过量空气系数,可有效提高炉膛出口烟温及锅炉燃烧稳定性。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return