• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 7 Issue 2
Jun.  2020
Turn off MathJax
Article Contents

Xixian CHEN, Jia NI, Linwei WANG, Luanluan XUE. Effect of Soft Foundation Embankment Widening on Mechanical Characteristics of Piles in the Original Embankment[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 148-156. doi: 10.16516/j.gedi.issn2095-8676.2020.02.022
Citation: Xixian CHEN, Jia NI, Linwei WANG, Luanluan XUE. Effect of Soft Foundation Embankment Widening on Mechanical Characteristics of Piles in the Original Embankment[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 148-156. doi: 10.16516/j.gedi.issn2095-8676.2020.02.022

Effect of Soft Foundation Embankment Widening on Mechanical Characteristics of Piles in the Original Embankment

doi: 10.16516/j.gedi.issn2095-8676.2020.02.022
  • Received Date: 2019-09-11
  • Rev Recd Date: 2019-11-06
  • Publish Date: 2020-06-25
  • Introduction   The increasing traffic and the increasingly tight construction cause the roads to be widened and rebuilt. In order to further study the stability of the embankment, the change of the mechanical characteristics of the pile under the original embankment is analyzed when the soft foundation embankment is widened.      Method     After verifying the centrifuge model,a three-dimensional numerical model of the widened embankment and the original embankment was established using Abaqus. Based on the comparative analysis, the influence of gravity, deformation modulus, strength parameters of widened embankment on the mechanical characteristics, deformation behavior and failure mode were carried out.      Result     The numerical simulation results show that the piles under the embankment had different contributions to anti-sliding. The piles close to the slope are mainly subjected to bending and shearing, and the piles far away from the slope are mainly affected by the axial force. The weight of the widened embankment affects the mechanical characteristics of the pile in the original embankment: the main performance is that the bending moment and shearing for piles in the original embankment reduced, and the axial force increased; the displacement of piles in the original embankment increased, in which the vertical displacement increment near the original slope foot is the largest and the largest lateral one is located in the middle of the original embankment. The soil weight of the widened embankment significantly affects the vertical displacement of the original embankment, but its deformation modulus and strength parameters almost have no obvious effect. After the embankment is widened, the mechanical characteristics of the pile in the original embankment change under the load. The potential failure mode is changed from bending-shear zone, bending zone and compression zone to bending zone and compression zone.      Conclusion     The model can verify the centrifuge test results, and the results can provide guidance for the stability analysis of embankment widening.
  • [1] 刘观仕,孔令伟,李雄威,等. 高速公路软土路基拓宽粉喷桩处治方案分析与验证 [J]. 岩石力学与工程学报,2008(2):309-315.

    LIUG S,KONGL W,LIX W,et al. Analysis and verification of treatment scheme for widening powder-jetting piles in soft soil roadbed of expressway [J]. Chinese Journal of Rock Mechanics and Engineering,2008(2):309-315.
    [2] 刘金龙,张勇,陈陆望,等. 路基拓宽工程的基本特性分析 [J]. 岩土力学,2010,31(7):2159-2163.

    LIUJ L,ZHANGY,CHENL W,et al. Analysis of basic characteristics of roadbed widening engineering [J]. Rock and Soil Mechanics,2010,31(7):2159-2163.
    [3] 贾宁,陈仁朋,陈云敏,等. 杭甬高速公路拓宽工程理论分析及监测 [J]. 岩土工程学报,2004(6):755-760.

    JIAN,CHENR P,CHENY M,et al. Theoretical analysis and monitoring of widening engineering of Hangzhou-Ningbo expressway [J]. Chinese Journal of Geotechnical Engineering,2004(6):755-760.
    [4] 苏阳. 广佛高速公路扩建工程软基路段施工简介 [J]. 水运工程,2001(2):51-55+58.

    SUY. Brief introduction to the construction of soft foundation section of Guangfo expressway expansion project [J]. Water Transport Engineering,2001(2):51-55+58.
    [5] 刘汉龙,赵明华. 地基处理研究进展 [J]. 土木工程学报,2016,49(1):96-115.

    LIUH L,ZHAOM H. Progress in ground treatment research [J]. China Civil Engineering Journal,2016,49(1):96-115.
    [6] 马成龙,曾轶,杨荣胜. 某核电站厂址道路抛石填筑路基强夯处理探讨 [J]. 南方能源建设,2016,3(增刊1):158-160+172.

    MAC L,ZENGY,YANGR S. Discuss on dynamic compaction treatment on rubble foundation in coastal road of nuclear power plant [J]. Southern Energy Construction,2016,3(Supp.1):158-160+172.
    [7] 徐晓斌,肖广平,王清,等. 真空联合堆载预压软土路基失稳分析 [J]. 南方能源建设,2017,4(增刊1):107-110.

    XUX B,XIAOG P,WANGQ,et al. Instability analysis of vacuum combined with preloaded soft soil roadbed [J]. Southern Energy Construction,2017,4(Supp.1):107-110.
    [8] LIUH L,CHARLESW W,FEIK. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay:case study [J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(12):1483-1493.
    [9] 翁效林,张留俊,李林涛,等. 拓宽路基差异沉降控制技术模型试验研究 [J]. 岩土工程学报,2011,33(1):159-164.

    WENGX L,ZHANGL J,LIL T,et al. Experimental study on model control of differential settlement control of widened roadbed [J]. Chinese Journal of Geotechnical Engineering,2011,33(1):159-164.
    [10] 凌建明,钱劲松,黄琴龙,等. 路基拓宽工程处治技术及其效果 [J]. 同济大学学报(自然科学版),2007(1):45-49.

    LINGJ M,QIANJ S,HUANGQ L,et al. Treatment technology and effect of roadbed widening engineering [J]. Journal of Tongji University(Natural Science),2007(1):45-49.
    [11] 李国维,边圣川,陆晓岑,等. 软基路堤拓宽静压PHC管桩挤土效应现场试验 [J]. 岩土力学,2013,34(4):1089-1096.

    LIG W,BIANS C,LUX C,et al. Field test of soil compaction effect of soft foundation embankment with wide static pressure PHC pipe pile [J]. Rock and Soil Mechanics,2013,34(4):1089-1096.
    [12] 高成雷,凌建明,杜浩,等. 拓宽路堤下带帽刚性疏桩复合地基应力特性现场试验研究 [J]. 岩石力学与工程学报,2008(2):354-360.

    GAOC L,LINGJ M,DUH,et al. Field test study on stress characteristics of composite foundation with rigid piles under capped embankment [J]. Chinese Journal of Rock Mechanics and Engineering,2008(2):354-360.
    [13] 杜浩,陈小琪,凌建明,等. 拓宽路堤下PHC桩复合地基变形特性监测分析 [J]. 土木工程学报,2009,42(9):139-144.

    DUH,CHENX Q,LINGJ M,et al. Monitoring and analysis of deformation characteristics of PHC pile composite foundation under widened embankment [J]. China Civil Engineering Journal,2009,42(9):139-144.
    [14] 吕伟华,缪林昌,王非,等. 桩-网加固拓宽路堤土拱效应试验研究 [J]. 岩土力学,2013,34(8):2316-2322.

    LÜW H,YUL C,WANGF,et al. Experimental study on soil arching effect of pile-net reinforcement for widening embankment [J]. Rock and Soil Mechanics,2013,34(8):2316-2322.
    [15] 於慧,丁选明,孔纲强,等. 高速公路拓宽工程现浇X形桩与圆形桩变形特性数值模拟对比分析 [J]. 岩土工程学报,2013,35(增刊2):170-176.

    YUH,DINGX M,KONGG Q,et al. Comparative analysis of deformation characteristics of cast-in-situ X-shaped piles and circular piles in highway widening project [J]. Chinese Journal of Geotechnical Engineering,2013,35(Supp.2):170-176.
    [16] California,StatesUnited,July 27-31,2004. Reston,VA:ASCE,2004:1395-1402.
    [17] LAMBRECHTSJ R,GANSEM A,LAYHEEC A. Soil mixing to stabilize organic clay for i-95 widening,alexandria,va [J]. Geotechnical specialpublication,2002,1(120):575-585.
    [18] HABIBH A A ,BRUGMANM H A,UILTINGB G. Widening of Road N247 founded on a geogrid reinforced mattress on piles [C]// Anon. Seventh International Conference on Geosynthetics, Nice,France, September 22-27,2002. Lisse:Wets &Zeitlinger,2002:369-372.
    [19] HANJ,OZTOPRAKS,PARSONSR L,et al. Numerical analysis of foundation columns to support widening of embankments [J]. Computersand Geotechnics,2007,34(6):435-448.
    [20] 郑刚,李帅,刁钰. 刚性桩复合地基支承路堤稳定破坏机理的离心模型试验 [J]. 岩土工程学报,2012,34(11):1977-1989.

    ZHENGG,LIS,DIAOY. Centrifugal model test of stability failure mechanism of rigid pile composite foundation supporting embankment [J]. Chinese Journal of Geotechnical Engineering,2012,34(11):1977-1989.
    [21] 俞建霖,李俊圆,王传伟,等. 考虑桩体破坏模式差异的路堤下刚性桩复合地基稳定分析方法研究 [J]. 岩土工程学报,2017,39(增刊2):37-40.

    YUJ L,LIJ Y,WANGC W,et al. Study on stability analysis method of rigid pile composite foundation under embankment considering the difference of pile failure modes [J]. Chinese Journal of Geotechnical Engineering,2017,39(Supp.2):37-40.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(16)  / Tables(2)

Article Metrics

Article views(637) PDF downloads(55) Cited by()

Related

Effect of Soft Foundation Embankment Widening on Mechanical Characteristics of Piles in the Original Embankment

doi: 10.16516/j.gedi.issn2095-8676.2020.02.022

Abstract:  Introduction   The increasing traffic and the increasingly tight construction cause the roads to be widened and rebuilt. In order to further study the stability of the embankment, the change of the mechanical characteristics of the pile under the original embankment is analyzed when the soft foundation embankment is widened.      Method     After verifying the centrifuge model,a three-dimensional numerical model of the widened embankment and the original embankment was established using Abaqus. Based on the comparative analysis, the influence of gravity, deformation modulus, strength parameters of widened embankment on the mechanical characteristics, deformation behavior and failure mode were carried out.      Result     The numerical simulation results show that the piles under the embankment had different contributions to anti-sliding. The piles close to the slope are mainly subjected to bending and shearing, and the piles far away from the slope are mainly affected by the axial force. The weight of the widened embankment affects the mechanical characteristics of the pile in the original embankment: the main performance is that the bending moment and shearing for piles in the original embankment reduced, and the axial force increased; the displacement of piles in the original embankment increased, in which the vertical displacement increment near the original slope foot is the largest and the largest lateral one is located in the middle of the original embankment. The soil weight of the widened embankment significantly affects the vertical displacement of the original embankment, but its deformation modulus and strength parameters almost have no obvious effect. After the embankment is widened, the mechanical characteristics of the pile in the original embankment change under the load. The potential failure mode is changed from bending-shear zone, bending zone and compression zone to bending zone and compression zone.      Conclusion     The model can verify the centrifuge test results, and the results can provide guidance for the stability analysis of embankment widening.

Xixian CHEN, Jia NI, Linwei WANG, Luanluan XUE. Effect of Soft Foundation Embankment Widening on Mechanical Characteristics of Piles in the Original Embankment[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 148-156. doi: 10.16516/j.gedi.issn2095-8676.2020.02.022
Citation: Xixian CHEN, Jia NI, Linwei WANG, Luanluan XUE. Effect of Soft Foundation Embankment Widening on Mechanical Characteristics of Piles in the Original Embankment[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 148-156. doi: 10.16516/j.gedi.issn2095-8676.2020.02.022
  • 《粤港澳大湾区发展规划纲要》今年正式出台,大湾区作为“一带一路”的重要支撑,要求提供全面对外开放的发展环境,深化国家和地区的互联互通,道路交通建设是其首要任务。目前各地区道路交通量随着经济的快速发展呈现饱和态势,为避免大量增加建设用地,道路拓宽可以在短时间内经济、环保地缓解这一情况,如广佛高速公路、沪宁高速、石黄高速等部分路段进行了拓宽处理[1,2,3,4]

    软基上修建或拓宽路堤需要考虑因地基沉降较大和承载力较低带来的稳定性问题。为了克服上述问题,目前用来处理软土地基的方法有:排水固结、桩基复合地基、振密及挤密技术、土工合成材料加筋技术、灌入固化物、托换与迁移等[5],如某滨海软土路基采用抛石填筑路基强夯处理[6],广东某软基高速公路采用了真空联合堆载预压法处理[7]。桩基复合地基因施工时间短且能显著减小沉降变形被广泛应用于大量实际工程中[8]

    近年来随着国内外对桩基加固拓宽路堤的研究不断展开,成果也逐渐丰富。翁效林[9]、凌建明等[10]结合离心机试验与数值模型分析了拓宽工程中桩基复合地基处治技术的适用情况及其优势。李国维[11]、高成雷[12]、杜浩[13]等通过现场试验对拓宽路堤下桩体的挤土效应、应力特性及加固效果进行分析。吕伟华[14]通过对桩-网加固拓宽路堤的土拱效应进行研究并指出现有设计方法的不足。刘观仕[1]通过数值计算对粉喷桩加固拓宽路堤做了敏感性分析。於慧[15]比较了不同截面类型的现浇桩在路堤拓宽过程中的变形和受力。Hiroshi[16]、Lambrechts[17]、Habib[18]研究并分析了桩基复合地基加固拓宽软基的设计方法。Han[19]通过数值计算比较了原路堤拓宽时原路堤下布桩与不布桩两种情况下所产生的变形和位移。

    虽然目前对桩基加固拓宽路堤的研究成果非常丰富,但主要集中在对新老路堤的沉降变形、拓宽路堤下桩体的受力分析以及设计方法等方面,而路堤拓宽后对原路堤下桩体受力特性影响的研究较少。本文基于Abaqus建立桩体路堤数值模型,与某一离心机试验的测量数据进行对比,以验证本模型的合理性和正确性;随后建立路堤拓宽的三维有限元数值模型,研究路堤拓宽后对原路堤下桩体的受力特性进行分析,并进行了相应的敏感性分析。敏感性分析表明拓宽填土的重度对原路堤的位移影响最为显著;拓宽后路堤下桩体受力特性发生改变,相同位置的桩在拓宽后对抗滑的贡献发生改变,潜在破坏模式由弯剪区、压弯区和受压区三个分区变为压弯区和受压区。所得研究结果对路堤拓宽的稳定性分析提供指导。

  • 某路堤为粉质黏土,重度γ=20.55 kN/m-3,路基土自上而下依次为软黏土和砂土。桩基采用PHC管桩,外径为0.8 m,壁厚0.11 m,桩长19 m。为了更好地研究该桩基受力特性以及离心机试验模型制作的方便,同时满足桩体抗弯强度与工程实际相似,离心机试验模型比尺取为n=80,桩长为237.5 mm,模型桩选外径10 mm,壁厚0.5 mm的圆形空心铝合金管,其弹性模量为7.87×104 MPa,泊松比为0.3,密度为2.7 g/cm3,采用标准砂来模拟砂土。离心机试验整体模型尺寸685 mm×350 mm ×337.5 mm(长×宽×高),路堤高62.5 mm,坡比为1∶1.5[20],详见图1

    Figure 1.  Centrifuge test layout

    Figure 1.  Centrifuge test layout

    本文首先基于离心机试验模型,采用Abaqus建立相应的有限元三维数值模型(如图2所示),模型侧向边界限制垂直边界方向水平位移,底部边界限制竖向及水平方向位移,模型中土体采用摩尔-库伦(Mohr-Coulomb)弹塑性本构模型,桩体采用理想弹性本构模型,桩土之间的摩擦系数为0.4。桩体与土体材料参数见表1

    Figure 2.  Finite element mesh of embankment

    类型γ/(kNm-3)E/MPaυc/kPaφ/(°)
    2778 7000.3
    粉质黏土20.554.320.416.5210.34
    软黏土19.472.50.49130
    标准砂20.1480.3038

    Table 1.  Parameters of pile and soil

    为便于比较,对桩身弯矩进行归一化处理,取桩身弯矩与桩身最大弯矩M/Mu进行对比,80 g重力加速度时,2#和4#桩身的M/Mu随深度变化的对比如图3所示。分析可知桩身弯矩最大位置点的数值模拟结果与试验结果一致,位于软黏土与砂土交界面处,且桩身弯矩沿深度的分布规律与试验数据基本一致,以此验证了本数值模型的合理性和正确性。

    Figure 3.  Bending moment of piles

  • 依据上述验证模型,为进一步研究路堤拓宽后原路堤下桩体的受力特性,建立三维路堤拓宽后的数值模型(如图4所示)。原路堤顶面宽度10 m,路堤高5 m,边坡比为1∶1.5,路堤分5层填筑,每层填土高度为1 m。桩体为外径0.8 m,壁厚0.11 m的圆形管桩,桩长19 m,桩间距2.5 m,正方形布置。根据对称性,计算模型取路堤的一半宽度,厚度为桩间距的一半为1.25 m,模型长度取90 m,确保边界效应可以忽略。土层总厚度为40 m,其中上层为15 m软黏土,下层为25 m硬土层,路堤填土为粉质黏土。为模拟路堤拓宽过程,在原路堤填筑完成后按照相同的高度及边坡比将路堤向左拓宽10 m,在拓宽的路堤下布设拓宽桩,拓宽桩尺寸与布置方式与原路堤下桩体相同。侧向边界限制垂直边界方向水平位移,底部边界限制竖向及水平方向位移。

    Figure 4.  Numerical model of widening embankment

    Figure 4.  Numerical model of widening embankment

    考虑拓宽的路堤快速填筑,即假定土体处于不排水状态。桩体及土体材料参数如表2所示。

    类型γ/(kNm-3)E/MPaυc/kPaφ/(°)
    2538 0000.26
    粉质黏土18.5300.31032
    软黏土17100.45150
    硬土19400.33032

    Table 2.  Pile and soil parameters

    数值模拟时,为了研究原路堤下桩体在路堤拓宽后抗滑机理的变化,将原路堤逐层添加在路基上,以20 kPa为一级,在原路堤顶部逐级施加均布荷载至80 kPa。为了得到原路堤下桩体在拓宽后的受力情况,先移除均布荷载,将拓宽桩的单元属性变为桩的属性,逐层激活拓宽路堤后以20 kPa为一级在拓宽后的路堤顶部逐级施加均布荷载至80 kPa。

  • 仅考虑拓宽路堤的自重对原路堤下桩体的受力特性影响,对路堤拓宽前后原路堤下不同位置桩体的弯矩、剪力、轴力以及桩顶位移进行对比分析,以期得到拓宽路堤对原路堤下不同位置桩体受力的影响,如图5所示为4#桩所受弯矩、轴力、剪力对比图。可以看出路堤拓宽后,4#桩所受的弯矩减小,在软硬两层土交接面处减小了45.01%,所受剪力延桩身均有不同程度的减小,所受轴力增大,在软硬土交界面处增大了23.99%。

    Figure 5.  Mechanical characteristics for 4# pile after widening

    路堤拓宽后原路堤下各桩弯矩和轴力的变化值 (拓宽前-拓宽后)的对比图如图6所示。各桩体所受弯矩拓宽后均呈减小趋势,其中4#桩减小最为明显,各桩弯矩减小程度最大处均位于软硬土交界面处;各桩所受轴力拓宽后增大,其中1#桩增大趋势最为明显,1#~7#增大趋势依次减弱。路堤在1#桩左侧开始拓宽,由于1#~7#桩体逐渐远离拓宽路堤,即离拓宽处越远的桩受到的影响越小,所以6#、7#桩弯矩与轴力的变化都比较小。

    Figure 6.  Bending moment and axial force of each pile after widening

    路堤拓宽前后路堤总位移云图如图7所示,拓宽前后路堤位移最大处均位于路堤底部中心桩顶附近。路堤变形以竖向沉降为主,拓宽后1#顶部右侧土体位移量增加了10.2%。

    Figure 7.  Displacement distribution of embankment

    Figure 7.  Displacement distribution of embankment

    各桩基在路堤拓宽后桩顶处横向和纵向位移如图8所示。从图中可以看出,仅1#桩的桩顶横向位移在拓宽后增加了,其余桩的桩顶横向位移均在减小,其中4#桩的桩顶横向位移减小最多,故4#桩的弯矩的减小量也是最大,6#、7#桩顶横向位移变化较小,所以弯矩与剪力的变化较小;1#~7#桩的竖向位移增大量由大到小,所以1#桩身轴力的增量最大,7#最小。

    Figure 8.  Lateral displacement and vertical displacement of piles

    路堤拓宽后由于拓宽路堤自重的加入对原路堤下桩体的受力特性会产生影响,且各不同位置处桩体所受影响程度不同:弯矩总体呈减小趋势,原路堤中部弯矩减小最多,轴力呈增大趋势,越接近于原路堤坡脚处增量越大;对于桩体位移,桩顶横向位移总体呈减小趋势,桩顶纵向位移总体呈增大趋势。

  • 为深入分析拓宽路堤土体参数对原路堤下桩体位移的影响,分别改变拓宽路堤土体的重度、压缩模量以及强度参数,计算相应工况下原路堤的桩体顶部关键测点A、B和C(如4(a)所示)的位移。

    图9所示为拓宽路堤土体自重对原路堤竖向位移的影响。可以看出随着拓宽路堤土体重度的增大,竖向位移曲线趋势向下,整体沉降有增大的趋势,拓宽路堤土体重度增加50%时,原路堤竖向位移会增加超过50%。可见,拓宽路堤重度对整个原路堤在拓宽过程中的竖向位移影响显著,实际拓宽工程中应当严格控制拓宽路堤的重度。

    Figure 9.  Vertical displacement with different volumetric weight of soil

    原路堤竖向位移与拓宽路堤土体变形模量和强度参数的关系曲线图分别如图10~图11所示。从图中可以看出,改变拓宽路堤土体的参数时,原路堤竖向位移变化较小,即原路堤竖向位移对拓宽路堤土体的变形模量和强度参数的变化不太敏感。增加拓宽路堤土体的弹性模量可以减少原路堤坡脚处竖向位移;黏聚力增大时,原路堤坡脚处竖向位移略有减小;摩擦角增加时,原路堤竖向位移基本无变化。

    Figure 10.  Vertical displacement with different deformation modulus of soil

    Figure 11.  Vertical displacement with different strength parameters

    Figure 11.  Vertical displacement with different strength parameters

  • 俞建林等[21]应用数值模拟对路堤受力时桩体的受力特性进行分析,将路堤下桩体的破坏模式分为受拉破坏、受弯破坏与受压破坏。郑刚[20]等通过试验和数值分析依据路堤不同位置处桩体的受力特性,将桩体的破坏模式分为4个区域:拉弯区、弯剪区、压弯区和承压区。

    原路堤与拓宽路堤顶部施加80 kPa均布荷载,为更好地分析各不同位置处桩体在路堤拓宽前后的受力变化。拓宽前原路堤下桩体所受的最大弯矩值、轴力值、剪力值分别记为MNQ,各桩体所受最大弯矩值、轴力值、剪力值分别为MiNiQi;拓宽后原路堤下桩受最大弯矩值、轴力值、剪力值分别为M'N'Q',各桩所受最大弯矩值、轴力值、剪力值分别为Mi'Ni'Qi'。对以上数据进行归一化处理,横坐标为桩号,纵坐标为各桩受力比值,对比图如图12 所示。

    Figure 12.  Comprehensive force diagram of each pile after widening

    根据图12,将原路堤下桩按照综合受力的情况分为如下情况:1#、2#、3#桩主要受到的力为弯矩与剪力作用,4#、5#桩主要受弯矩和轴力作用,6#、7#桩主要受轴力作用,故可将其分为弯剪区、压弯区和受压区三个部分。路堤拓宽后加载时原路堤桩的综合受力情况如下:所有桩体受力均变为以轴力为主,弯矩与剪力随桩号增加而减小。1#、2#、3#桩所受弯矩、轴力、剪力均处于较高值,为压弯区;4#、5#、6#、7#只有轴力维持在较高水平,为受压区。

    路堤拓宽后在荷载作用下,原路堤下桩体的受力情况会发生改变,特别是接近于坡脚的桩所受主要荷载会发生较大的改变,其潜在破坏模式也会随之改变,从而对路基的整体稳定性产生影响。

  • 路堤拓宽后由于新荷载的加入会对原路堤下不同位置桩的受力产生不同影响。拓宽路堤土体自重使得原路堤下桩体所受弯矩及剪力减小,所受轴力增大,越靠近拓宽路堤的桩受影响越大,原路堤下桩体的位移增大,其中靠近原坡脚处的竖向位移增量最大,横向位移增量最大处位于原路堤中部。

    拓宽路堤土体的重度对原路堤的竖向位移影响显著,而拓宽路堤土体的变形模量和强度参数对原路堤的竖向位移影响较小。

    路堤拓宽后在荷载作用下,原路堤下桩体的受力特性会发生改变,靠近坡脚出的桩变化最为显著,相应的潜在破坏模式由弯剪区、压弯区和受压区3个分区变为压弯区和受压区。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return