• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 8 Issue S1
Jul.  2021
Turn off MathJax
Article Contents

CHENG Weijie,ZHANG Shipeng,LIU Yiming.Lightning Performance Assessment Method for Overhead Transmission Line Based on ATP Model Automatic Generation[J].Southern Energy Construction,2021,08(增刊1):33-38. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.005
Citation: CHENG Weijie,ZHANG Shipeng,LIU Yiming.Lightning Performance Assessment Method for Overhead Transmission Line Based on ATP Model Automatic Generation[J].Southern Energy Construction,2021,08(增刊1):33-38. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.005

Lightning Performance Assessment Method for Overhead Transmission Line Based on ATP Model Automatic Generation

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.005
  • Received Date: 2021-04-08
  • Rev Recd Date: 2021-05-06
  • Publish Date: 2021-07-30
  •   Introduction  An assessment method based on ATP simulation model automatic generation was proposed to solve the problems of low efficiency in model establishment and complex assessment process when analyzing and evaluating the lighting performance of overhead transmission line by simulation.  Method  The working thoughts, general framework and implementation step of the proposed method were presented at first. Based on the resolution of the structure of the ATP simulation model file, the ATP simulation model automatic generation was realized through coding the data cards in model file according to initial data of transmission line, and then connecting all the cards effectively. The simulation results automatic determination was realized through executing the simulation model automatically and then reading the file containing the simulation results. The method of model parameter auto-adjustment according to simulation results was designed, and finally the auto-assessment of lighting protection performance of overhead transmission line was achieved.  Result  The proposed method is verified by a specific application example,the calculated value of lightning current with breakdown is 13.7 kA, and the breakdown occurs in phase B, which is consistent with the setting of hitting phase B in the simulation model,the results show the feasibility and effectiveness of the proposed method.  Conclusion  The proposed method can improve the accuracy and efficiency in assessing the lighting protection performance of transmission line utilizing simulation method, and has practical value.
  • [1] 任双赞,李力,蒲路,等. 气象灾害信息在输电线路运行维护中的应用分析 [J]. 南方能源建设,2017,4(3):141-144+118.

    RENS Z,LIL,PUL,et al. Application and analysis of meteorological disaster information on the operation and maintenance of transmission line [J]. Southern Energy Construction,2017,4(3):141-144+118.
    [2] 严肃.高压输电线路的综合防雷措施分析 [J].工程建设与设计,2020(20):48-49.

    YANS. Analysis of integrated lightning protection measures for high voltage transmission lines [J]. Construction and Design for Engineering,2020(20):48-49.
    [3] 谢从珍,白剑锋,王红斌,等.基于多维关联信息融合的架空输电线路雷害风险评估方法 [J].中国电机工程学报,2018,38(21):6233-6244+6485.

    XIEC Z,BAIJ F,WANGH B,et al. Lightning risk assessment of transmission lines based on multidimensional related information fusion [J]. Proceedings of the CSEE,2018,38(21):6233-6244+6485.
    [4] 谷山强,陈家宏,冯万兴,等. 中国电网近年来防雷技术发展及应用效果 [J]. 高电压技术,2013,39(10):2329-2343.

    GUS Q,CHENJ H,FENGW X,et al. Development and application of lightning protection technologies in power grids of China [J]. High Voltage Engineering,2013,39(10):2329-2341.
    [5] 林方新,朱映洁.避雷器安装方案对线路耐雷性能的影响研究 [J].南方能源建设,2017,4(1):75-80+101.

    LINF X,ZHUY J. Influence of arrester installation scheme on line lightning protection performance [J]. Southern Energy Construction,2017,4(1):75-80+101.
    [6] 陈家宏,赵淳,王剑,等. 基于直接获取雷击参数的输电线路雷击风险优化评估方法 [J]. 高电压技术,2015,41(1):14-20.

    CHENJ H,ZHAOC,WANGJ,et al. Optimal lightning risk assessment method of transmission line based on direct acquisition of lightning stroke parameter [J]. High Voltage Engineering,2015,41(1):14-20.
    [7] 胡雯,赵淳,桂超.基于变权综合理论的输电线路防雷措施优选研究 [J].陕西电力,2016,44(10):11-14+41.

    HUW,ZHAOC,GUIC. Research on optimization of lightning protection measures of transmission lines based on variable weight synthesizing theory [J]. Shanxi Electric Power,2016,44(10):11-14+41.
    [8] 陈冬,刘建华,贾晨曦. 基于ATP-EMTP的耐雷水平研究 [J]. 电瓷避雷器,2011(5):8-11+15.

    CHEND,LIUJ H,JIAC X. Study on lightning with stand level based on ATP-EMTP [J]. Insulators and Surge Arresters,2011(5):8-11+15.
    [9] 陈霖华,刘宇彬,贾永兵,等. 3种防雷技术在确保反击耐雷水平时的配合应用方法 [J].电瓷避雷器,2020(4):14-20.

    CHENL H,LIUY B,JIAY B,et al. Application of three kinds of lightning protection technology in ensuring the level of lightning resistance [J]. Insulators and Surge Arresters,2020(4):14-20.
    [10] 于振江,安韵竹,许子涛,等.35 kV配电线路直击雷防护计算 [J].山东理工大学学报(自然科学版),2019,33(2):24-30.

    YUZ J,ANY Z,XUZ T,et al. Simulation on direct lightning strike protection of 35 kV power distribution line [J]. Journal of Shandong University of Technology(Natural Science Edition),2019,33(2):24-30.
    [11] 王羽,文习山,蓝磊,等. 提高架空配电线路耐雷水平的仿真分析 [J]. 高电压技术,2011,37(10):2471-2476.

    WANGY,WENX S,LANL,et al. Simulation analysis on improving lightning withstanding level of overhead distribution lines [J]. High Voltage Engineering,2011,37(10):2471-2476.
    [12] 罗日成,李稳,李志前,等. 基于分段参数的风力机组建模及雷击暂态过电压分析 [J]. 高电压技术,2015,41(8):2780-2787.

    LUOR C,LIW,LIZ Q,et al. Modeling of wind turbine generator based on piecewise parameters and its lightning transient overvoltage analysis [J]. High Voltage Engineering,2015,41(8):2780-2787.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(5)

Article Metrics

Article views(445) PDF downloads(45) Cited by()

Related

Lightning Performance Assessment Method for Overhead Transmission Line Based on ATP Model Automatic Generation

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.005

Abstract:   Introduction  An assessment method based on ATP simulation model automatic generation was proposed to solve the problems of low efficiency in model establishment and complex assessment process when analyzing and evaluating the lighting performance of overhead transmission line by simulation.  Method  The working thoughts, general framework and implementation step of the proposed method were presented at first. Based on the resolution of the structure of the ATP simulation model file, the ATP simulation model automatic generation was realized through coding the data cards in model file according to initial data of transmission line, and then connecting all the cards effectively. The simulation results automatic determination was realized through executing the simulation model automatically and then reading the file containing the simulation results. The method of model parameter auto-adjustment according to simulation results was designed, and finally the auto-assessment of lighting protection performance of overhead transmission line was achieved.  Result  The proposed method is verified by a specific application example,the calculated value of lightning current with breakdown is 13.7 kA, and the breakdown occurs in phase B, which is consistent with the setting of hitting phase B in the simulation model,the results show the feasibility and effectiveness of the proposed method.  Conclusion  The proposed method can improve the accuracy and efficiency in assessing the lighting protection performance of transmission line utilizing simulation method, and has practical value.

CHENG Weijie,ZHANG Shipeng,LIU Yiming.Lightning Performance Assessment Method for Overhead Transmission Line Based on ATP Model Automatic Generation[J].Southern Energy Construction,2021,08(增刊1):33-38. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.005
Citation: CHENG Weijie,ZHANG Shipeng,LIU Yiming.Lightning Performance Assessment Method for Overhead Transmission Line Based on ATP Model Automatic Generation[J].Southern Energy Construction,2021,08(增刊1):33-38. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.005
  • OA:https://www.energychina.press/

    开放科学(资源服务)二维码:

    2095-8676 © 2021 Energy China GEDI. Publishing services by Energy Observer Magazine Co.,Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

    高电压等级架空输电线路雷击故障频繁发生,严重威胁电网的安全稳定运行1-2,准确客观评估线路防雷性能可为制定有效的输电线路防雷措施提供可靠依据3-4,因而得到电力系统各方人员的长期关注5-6

    目前评估输电线路防雷性能的方法主要有规程计算法和仿真分析法7-8。规程计算法是一种利用运行经验对耐雷水平的简化计算方法9-10,由于其简单易用,在工程中得到了广泛的应用。但其采用电感模型模拟雷电流在杆塔上的通路,而未考虑杆塔中的波过程,将导致计算结果与实际结果之间存在误差。仿真分析法主要依靠相关专业软件,通过仿真得到线路相应的耐雷指标11-12,包括反击耐雷水平、绕击率和绕击跳闸率等。对不同的输电线路进行耐雷水平计算时,均需要手动搭建仿真模型,模型搭建后,仍需要手动修改雷电流幅值并多次运行来得到初始击穿电流,工作量大且繁琐。

    本文提出了基于ATP仿真模型自动运行的架空线路防雷性能评估方法。首先给出了基于ATP仿真模型自动运行的架空线路防雷性能评估方法的总体思路和整体框架,分别给出了ATP仿真模型自动生成方法、ATP仿真模型自动运行和仿真结果自动读取、ATP仿真模型参数自动调整方法以及基于ATP仿真的架空线路防雷性能评估指标自动求解的原理和具体实现。通过具有应用实例说明了所提出方法的实用性和有效性。

  • ATP(Alternative Transients Program)是目前电磁暂态分析中应用最广泛的软件之一。本文采用ATP来进行架空线路防雷性能指标的仿真求解工作。

    图1给出了基于ATP仿真模型自动运行的架空线路防雷性能评估方法的整体框架。

    Figure 1.  Overall framework of the system

    基于ATP仿真模型自动运行的架空线路防雷性能评估方法的原理为:首先根据架空线路参数和仿真模型参数,生成ATP仿真模型,自动调用ATP仿真程序运行仿真模型,自动读取仿真结果并进行判断,若仿真结果精度满足要求则输出仿真结果,得到架空线路防雷性能的具体指标值,从而可对其防雷性能进行评估;若不满足精度要求,则自动调整模型参数后再次生成模型、运行并读取结果判断,直至满足仿真精度要求后停止。可以看到,在上述过程中的几个重要环节是仿真模型的自动生成、仿真模型自动运行及结果读取和仿真模型参数的自动调整算法。

    图1中虚线框内的部分由MATLAB GUI编程实现。

  • 通常使用ATP进行仿真计算时,用户是在ATP提供的图形化前端输入程序ATPDraw中完成的。用户以图形化方式编制完成仿真模型的设置后,ATPDraw将根据模型拓扑和相应的参数,编写生成*.ATP模型文件,其后ATP软件对ATP模型文件进行编译、链接和运行,并将结果回送至ATPDraw中显示,供用户查看。

    本文在自动生成ATP仿真模型文件时,是根据对模型文件结构的解析,直接编写生成模型文件,并调用ATP软件运行模型文件并读取结果,整个过程无需ATPDraw的参与。

  • ATP仿真模型文件(*.ATP)中的文本包括注释类和代码类。注释类用于对代码进行说明,对仿真无实质性作用。仿真模型代码由实现不同功能的功能页面按一定次序连接构成,依次包括:

    1)初始化数据页。用于提供仿真初始化和通用设置,主要包括仿真的步长、运行时间和绘图步长等。

    2)控制系统暂态分析数据页。用于提供控制系统暂态仿真所需的数据。

    3)模型数据页。用于自定义元件的加入。

    4)支路数据页。用于确定仿真模型中元件连接关系,每个元件均具有唯一不相同的一个编号。

    5)开关数据页。用于设置仿真模型中各开关的开断状况。

    6)电源数据页。用于设置仿真模型中各功率源的参数。

    7)输出数据页。用于提供仿真模型中各种测量。

    8)空白数据页。用于指示仿真程序的结束。该页尽管无任何实质功能,但是每个仿真模型不可缺少的页面。

  • 仿真模型的自动生成由三个部分构成,首先是原始数据的处理和架空线路库文件的生成。

    原始参数包括两个部分,第一部分为模型中所需要的电源,接地电阻,架空线路,杆塔参数等。第二个部分是需要调整的模型参数和仿真结果存储路径等参数。本文中主要从初始击穿雷电流幅值这个指标来评估架空线路的防雷性能,因此该参数是可调整的。

    ATP模型文件格式具有非常严格的要求,需要对原始数据进行预处理。当数据长度超出要求时需要先转换为科学计数法形式,并以字符串形式保存。而数据长度不足时需要在前面补空格。

    在完成数据处理后,通过MATLAB GUI编写代码,自动生成ATP模型文件中的各个数据卡,并按2.1节中的顺序写入,即可生成ATP模型文件。

    ATP软件将架空线路视为特殊的元件进行处理,仿真模型中涉及架空线路时,必须先生成架空线路相应的库文件(*.LIB),并在支路数据卡中调用。读取架空线路参数后生成可供ATP调用的LIB文件的流程如图2所示。

    Figure 2.  Generation of LIB files of overhead line

    首先需要根据上述生成ATP仿真模型文件的方法生成仅包含架空线路元件的ATP仿真模型文件。需要注意的是,这个模型文件中将不再含有对架空线路LIB的调用。

    调用ATP软件运行架空线路ATP模型文件(自动运行ATP模型文件的方法将在3.1节中给出),获得包含仿真结果的LIS或PCH文件。调用ATP软件中的LCC模块,根据LIS或PCH文件最终生成架空线路元件的LIB库文件。

  • 该部分涉及两方面的工作,即自动运行仿真模型并读取相应的结果,以及根据读取结果确定防雷性能指标。

  • 为了实现ATP仿真模型的自动运行,首先需要计算机注册表中注册,使得*.ATP文件的默认打开方式为ATP软件。然后通过代码system(['autoatp_','.atp','&'])实现仿真模型的自动运行。其中,'&'的作用是使程序运行后返回MATLAB。

    ATP仿真模型运行后的结果将保存在LIS文件中,通过对该文件中相应内容的读取即可获知仿真结果。例如在模型中放置了电压测量元件对某点电压进行测量,那么LIS文件中与该测量元件对应的位置就包含了仿真过程中该点电压的全部数据,ATPDraw正是根据这些数据来绘制曲线。

    本文中为了获知架空线路的初始击穿雷电流幅值,需要知道某个雷电流设置下是否发生击穿,这也是根据LIS中的内容来完成的。LIS中将包含一个一行三列的矩阵,例如[1 0 0],1代表击穿,而0表示未击穿,例如[1 0 0]表示仅A相发生击穿。

    因此,通过上述读取仿真结果文件相应内容的方法,即可获知架空线路在该雷电流幅值下是否发生击穿。

  • 以求解初始击穿雷电流幅值为例,其基本思路如图3所示。

    Figure 3.  Solution flow of initial breakdown lightning current

    根据当前雷电流Icur自动生成仿真模型后运行,读取结果后判断是否发生击穿。若没有发生击穿,则将当前最大未击穿雷电流值Iubk更新为Icur,增大雷电流幅值,雷电流幅值增大量为当前最小击穿雷电流Ibk减去最大未击穿雷电流Iubk差值的0.618。若发生击穿,则判断当前最小击穿雷电流IbkIcur的差值是否小于预设精度Ith,若满足该条件则输出Icur,即可求解得到初始击穿雷电流。若不满足该条件,则将当前最小击穿雷电流值Ibk更新为Icur,减小雷电流幅值,雷电流幅值减小量为当前最小击穿雷电流Ibk减去当前最大未击穿雷电流Iubk差值的0.618。根据Icur的新值重新生成仿真模型并循环执行图3中的流程。

    当前雷电流Icur的初始值选取为一个较大的值,保证第一次一定发生击穿,而当前最小击穿雷电流值Ibk的初始值选取为Icur初始值的2倍或以上,保证第一次击穿时不会满足精度要求;当前最大未击穿雷电流Iubk的初值设置为0 A。

  • 应用所提出的计算方法,根据架空线路的基本参数搭建仿真模型,仿真电路如图4所示。

    Figure 4.  The simulation model

    图4所示仿真电路模型包括有三级杆塔,其中雷电流击中中间杆塔,仿真电路模型中主要元件的参数如图5所示。

    Figure 5.  Parameter values of the components in a simulation model

    设置初始雷电流50 kA,精度0.1 kA,经过10次循环,约11 min,求出发生击穿的雷电流幅值为13.7 kA,且发生的是B相击穿,与仿真模型中设置击中B相一致。

  • 本文对ATP仿真模型文件的结构进行了解析,利用MATLAB编制了输电架空线路杆塔击穿电流仿真模型的自动生成呈现,实现了杆塔初始击穿电流自动求解。本文方法有效提高了ATP仿真模型的搭建效率和准确性,提高了初始击穿电流求解精度。本文所提出的思路和具体实现还可用于利用ATP仿真进行其他类似参数的求解。

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return