• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 8 Issue S1
Jul.  2021
Turn off MathJax
Article Contents

WU Afeng,TAN Canshen.Verification of the Implementation Effect of the Optimization Design Scheme of Flue Gas,Air and Pulverized Coal Pipeline for a 1 000 MW Unit[J].Southern Energy Construction,2021,08(增刊1):93-96. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.015
Citation: WU Afeng,TAN Canshen.Verification of the Implementation Effect of the Optimization Design Scheme of Flue Gas,Air and Pulverized Coal Pipeline for a 1 000 MW Unit[J].Southern Energy Construction,2021,08(增刊1):93-96. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.015

Verification of the Implementation Effect of the Optimization Design Scheme of Flue Gas,Air and Pulverized Coal Pipeline for a 1 000 MW Unit

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.015
  • Received Date: 2021-04-08
  • Rev Recd Date: 2021-05-20
  • Publish Date: 2021-07-30
  •   Introduction  In order to optimize the typical design scheme of flue gas, air and pulverized coal pipeline, which had been applied in many projects, this paper planned to verify the implementation effect before and after the design optimization, so as to further improve the typical optimization scheme system for verification.  Method  Taking a specific project as an example, this paper adopted the research method of comparing the absolute value and difference between the theoretical calculated value and the actual test value, and carried out a comparative study on the theoretical pressure drop and the field test value about air and flue gas duct as well as pulverized coal pipe.  Result  The results showed that the optimization effect of theoretical calculation was inferior to the measured one.  Conclusion  The optimization scheme was beneficial to reduce the resistance level of the whole pipe system, so it will make the actual implementation effect due to the theoretical calculation value. The research results of this paper has certain reference significance for the calculation of the resistance of flue gas, air and pulverized coal pipeline.
  • [1] 苏欣新. 300 MW机组烟风系统设计和设备选型的几点体会 [J]. 电站系统工程,2003(6):64.

    SUX X. Considerations about design and type selection of equipment for 300 MW unit flue gas & air system [J]. Power System Engineering,2003(6):64.
    [2] 于飞,刘明,李卫东,等. 90°矩形截面弯头内置导流板的布置优化研究 [J]. 动力工程学报,2015,35(2):147-152.

    YUF,LIUM,LIW D,et al. Layout optimization of guide plates in a 90 degree dlbow with rectangular cross section [J]. Journal of Chinese Society of Power Engineering,2015,35(2):147-152.
    [3] 李鹏翔,宗保军,李原平,等. 100 MW机组锅炉烟风管道振动和风机积灰振动的消除 [J]. 热力发电,2003(6):66-67+1.

    LIP X,ZONGB J,LIY P,et al. Elimination of vibration of boiler smoke and wind pipe and accumulated dust of fan for 100 MW unit [J]. Thermal Power Generation,2003(6):66-67+1.
    [4] 赵全斌,薛朝囡,刘明,等. 火电厂烟风通道主要异形件优化研究 [J]. 工程热物理学报,2015,36(4):780-784.

    ZHAOQ B,XUEZ N,LIUM,et al. Optimization on main types of major irregular parts for air & flue gas ducts in thermal power plant [J]. Journal of Engineering Thermophysics,2015,36(4):780-784.
    [5] 叶兴联,李立锋,章华熔,等. 低低温电除尘器烟风道流线型设计与分析 [J]. 环境工程学报,2018,12(11):3274-3280.

    YEX L,LIL F,ZHANGH R,et al. Design and analysis of streamlined shape flue gas duct for low-low temperature electrostatic precipitator [J]. Chinese Journal of Environmental Engineering,2018,12(11):3274-3280.
    [6] 王俊启. 1 025 t/h锅炉风烟系统改造对厂用电率的影响 [J]. 热力发电,2003(10):50-52+97.

    WANGJ Q. The influence of 1 025 t/h boiler air and flue system transformation on the power consumption rate of the plant [J]. Thermal Power Generation,2003(10):50-52+97.
    [7] 翟德双. 降低燃煤电厂厂用电率技术分析 [J]. 中国电力,2015,48(3):9-12.

    ZHAID S. Technical analysis on auxiliary power ratio reduction in coal-fired power plants [J]. Electric Power,2015,48(3):9-12.
    [8] 邢希东. 600 MW火电机组降低厂用电率措施 [J]. 中国电力,2007(9):60-64.

    XINGX D. Countermeasures to reduce the auxiliary power consumption rate of 600 MW thermal power units [J]. Electric Power,2007(9):60-64.
    [9] 赵鹏,龙辉,陶叶. 我国超(超)l临界燃煤机组节能环保设计技术策略分析 [J]. 电力建设,2012,33(4):54-57.

    ZHAOP,LONGH,TAOY. Strategy analysis for energy saving and environmental protection design of ultra supercritical coal-fired unit in China [J]. Electric Power Construction,2012,33(4):54-57.
    [10] 聂君,刘钢. 估算厂用电率的负荷率法 [J]. 中国电力,2013,46(9):44-46+55.

    NIEJ,LIUG. Estimation of auxiliary power consumption rate with load ratio method [J]. Electric Power,2013,46(9):44-46+55.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Tables(2)

Article Metrics

Article views(273) PDF downloads(32) Cited by()

Related

Verification of the Implementation Effect of the Optimization Design Scheme of Flue Gas,Air and Pulverized Coal Pipeline for a 1 000 MW Unit

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.015

Abstract:   Introduction  In order to optimize the typical design scheme of flue gas, air and pulverized coal pipeline, which had been applied in many projects, this paper planned to verify the implementation effect before and after the design optimization, so as to further improve the typical optimization scheme system for verification.  Method  Taking a specific project as an example, this paper adopted the research method of comparing the absolute value and difference between the theoretical calculated value and the actual test value, and carried out a comparative study on the theoretical pressure drop and the field test value about air and flue gas duct as well as pulverized coal pipe.  Result  The results showed that the optimization effect of theoretical calculation was inferior to the measured one.  Conclusion  The optimization scheme was beneficial to reduce the resistance level of the whole pipe system, so it will make the actual implementation effect due to the theoretical calculation value. The research results of this paper has certain reference significance for the calculation of the resistance of flue gas, air and pulverized coal pipeline.

WU Afeng,TAN Canshen.Verification of the Implementation Effect of the Optimization Design Scheme of Flue Gas,Air and Pulverized Coal Pipeline for a 1 000 MW Unit[J].Southern Energy Construction,2021,08(增刊1):93-96. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.015
Citation: WU Afeng,TAN Canshen.Verification of the Implementation Effect of the Optimization Design Scheme of Flue Gas,Air and Pulverized Coal Pipeline for a 1 000 MW Unit[J].Southern Energy Construction,2021,08(增刊1):93-96. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.015
  • OA:https://www.energychina.press/

    开放科学(资源服务)二维码:

    2095-8676 © 2021 Energy China GEDI. Publishing services by Energy Observer Magazine Co., Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

  • 目前燃煤电厂烟风煤粉系统的阻力计算一般参照相关规程进行单个零件计算及全阻力累加,由于系统性考虑不足,可能使计算得到的阻力值不能反映烟风煤粉系统的实际情况1。同时,鉴于目前计算机辅助工具的不断进步,新型的零部件诸如吸风口、方圆节、汇流或分流组件等层出不穷,规程的经验公式已难以将其全部涵盖。基于此,本项目以海门电厂1 000 MW机组为例,拟通过理论压降公式计算与现场实测两种方式对主要烟风煤粉管道采用优化设计方案前后的实施效果进行验证,由于该工程的烟风煤粉管道典型部件优化具有通用性,故验证结果可以直接指导后续工程的烟风道优化方案选择及阻力计算。

  • 主要烟风煤粉管道,参照火电工程的设计习惯,可以细分为冷一次风道、冷二次风道、热一次风道、送粉管道、除尘器前烟道及热二次风道。

  • 据了解,目前电厂的测试条件相对较差,故为了最大程度的消除测试手段和测试仪器带来的偏差,本文不但对理论计算值与实际测试值的绝对值进行对比,而且还增加了差值对比。差值对比方案的简介如下:

    1)选择两台机组(海门电厂2号机组及3号机组),保证主机相同,工程环境边界条件相同,主要辅机的布置保持不变,仅烟风煤粉管道布置存在差异。

    2)现场测试点布置的相对位置相同。

    3)测试过程中机组负荷、燃煤品质等主要参数保持不变。

    4)对烟风煤粉管道进行分段,并对两台机组不同段的阻力差额进行理论计算和实际测试数据计算,得出理论差值和实测差值。

    5)进行差值对比。

  • 采用大气压力表测量当地大气压力pa(Pa),采用水银棒式温度计测量计算截面处的介质温度t(℃)。管道阻力△Pt式(1)计算,其中计算截面处的静压Ps采用微压计测量,动压Pd采用等截面网格法测量,利用标准皮托管和微压计测量截面上各网格点的动压,并按照式(2)计算。计算截面处的流量qv式(3)计算,介质密度ρ式(4)计算:

    ΔPt=Pt1-Pt2=(Ps+Pd)1-(Ps+Pd)2 ((1))
    Pd=(i=1nPdi/n)2 ((2))
    qv=A×2pd/ρ ((3))
    ρ=ρo×273273+t×Pa+Ps101  325 ((4))

    式中:Pt1为管道进口截面全压(Pa);Pt2为管道出口截面全压(Pa);Ps为测量截面处静压(Pa);Pd为测量截面处动压(Pa);Pdi为流量测量截面内各个网格点上的时间平均动压(Pa);A为流量测量截面处的面积(m2);ρo为标准状态下介质(烟气或空气)的密度(kg/m3)。

  • 主要理论计算及实测值数据对比详见表1所示。为使数据具有可比性,表中的分段压降实测值均已经折算到设计温度和设计流量工况。

    项目2号机组实测值3号机组实测值实测差值(3-2)理论计算差值(3-2)
    冷一次风消音器至风机入口333.0172.7-160.3-26.8
    风机出口至空预器入口123.740.5-83.2-24
    冷二次风消音器至风机入口410.6274.8-135.8-24
    风机出口至空预器入口135.7129.3-6.30.0
    热一次风空预器出口至热一次风母管1 3221268-54+75
    送粉管道(B磨出口至燃烧器入口)B11段1 9201 955-411D磨(259.2~491.5)
    B12段1 9051 713-608
    B21段2 0531 502-961
    B22段1 6301 355-619
    B31段2 0771 587-912
    B32段1 6321 407-575
    B41段2 1531 950-675
    B42段1 8871 832-483
    除尘器前烟道除尘器进口段119095-111-49
    除尘器进口段219555-146
    除尘器进口段319270-140
    热二次风道空预器出口至后墙燃尽风二次风箱入口547807+259-318.4

    Table 1.  Comparison between theoretical pressure drop and field test results of air and flue gas duct as well as pulverized coal pipe

    表1的对比可以分析总结如下:

    1)现场实测的分段压降值基本上优于理论计算值。结合实际布置发现,2号机组风机吸风口和防雨罩采用传统形式,整体流场较差,故实际测试值劣于3号机组。3号机组采用新型吸风口和防雨罩,带来了整体流场优化,有利于降低吸入口部位其他零部件的阻力,同时风机出口段减少弯头或者增设导流板的做法也可以优化流场,而经验公式对此没有具体规定,对整个流场的统筹考虑也相对简单2-3

    2)3号机采用优化方案后,现场实测的优化效果明显优于理论计算值,这主要是由于3号机组所做的优化,对整个管道系统的阻力降低均有好处,可以降低整体阻力水平。而理论计算值仅就优化的局部位置进行了计算4-5,故数值偏小。

    3)由表1可以看出,3号机热二次风道采用优化方案后,现场实测的优化效果同理论计算值相差不大。现场实测值稍偏低。这与现场测点位置和测试精确度关系较大。

    基于电厂实际主辅机配置,将压降优化值折算至电耗及运行费用,进行经济性对比。主要计算公式如下:

    1)风机轴功率 Pf

    Pf=QsHρ/(1 000ηFηm)

    式中:Qs为风机入口流量(m3/s);H为风机全压(Pa);ρ为气体压缩系数;ηm为风机机械效率,一般取0.98;ηF为风机空气动力效率。

    2)年运行费用 Ry

    Ry=PfhyBP/(ηbηsηmt)

    式中:hy为年利用小时数(h),本工程取值5 500 h;BP为单位发电成本(元/kW·h),本工程取值0.2616-7ηb为厂变效率,一般取0.98;ηmt为风机电动机内效率;ηs为输电效率,一般取0.98。

    对优化前后的风机轴功率、及年运行费用分别进行计算,计算所得的差值如表2所示。

    项目冷一次风冷二次风热一次风送粉管道除尘器前烟道热二次风累计
    减少初投资/万元36.915.41316.334.30115.9
    THA阻力节约值/Pa理论50.824175.6491.549.21318.41 109.51
    实测240.5142.1533.64111112591 697.2
    减少风机轴功率ΔPf/kW理论6.88.523.565.838.2112.9255.7
    实测32.250.471.455.086.191.9386.9
    减少运行费用ΔRy/(万元·年-1理论2.122.657.3220.5011.8935.1979.7
    实测10.0315.7022.2517.1426.8228.62120.6

    Table 2.  Summary of optimization results

  • 海门电厂3号机组在2号机组的基础上对烟风道进行了大量的优化设计,采用优化措施后,每台机组可降低初投资115.9万元,3号机组共可以降低约232万元。

    文章以依托工程为例,对烟风煤粉管道的设计优化实施效果进行了理论计算与现场测试验证。理论计算结果显示每台机组每年可节约运行费用至少79.7万元8-9,实测结果显示每台机组每年可节约运行费用120.6万元10,经济效益较好。

    优化前后的现场实测效果优于理论计算值,主要原因在于优化方案有利于降低烟风煤粉整个管道系统的阻力水平,对未优化部位的零部件阻力降低也有很大好处,理论计算仅就优化部位进行了优化前后差值计算,故数值偏小。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return