• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 9 Issue 2
Jun.  2022
Turn off MathJax
Article Contents

Shushan CHEN, Tingshen ZHANG, Sanping XIAO, Qiangtao LI, Minjiang FAN, Zhi LI, Junshan HE. Development and Application of UHMWPE Nozzle for Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 131-136. doi: 10.16516/j.gedi.issn2095-8676.2022.02.019
Citation: Shushan CHEN, Tingshen ZHANG, Sanping XIAO, Qiangtao LI, Minjiang FAN, Zhi LI, Junshan HE. Development and Application of UHMWPE Nozzle for Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 131-136. doi: 10.16516/j.gedi.issn2095-8676.2022.02.019

Development and Application of UHMWPE Nozzle for Nuclear Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2022.02.019
  • Received Date: 2022-03-08
  • Rev Recd Date: 2022-05-29
  • Available Online: 2022-06-24
  • Publish Date: 2022-06-24
  •   Introduction  The paper aims to develop a corrosion resistant and wearable ultrahigh molecular weight polyethylene(UHMWPE) nozzle in order to solve the nozzle erosion and corrosion problems of circulating water filtration system(CFI) which is nuclear safety grade 3 system in nuclear power plant.   Method  Through the test of important processing parameters, the nozzle manufacturing process was confirmed. In order to verify the wear resistance and hydraulic performance of the developed nozzle, the wear resistance test of the material was carried out and the scour test and hydraulic test using developed nozzles also have been done.   Result  Test results demonstrate that the UHMWPE nozzle has excellent wear resistance, which is much better than traditional materials. The UHMWPE nozzle can meet the needs of high-speed erosion of nuclear power plants, and its hydraulic performance can also meet the requirements of nuclear power plants.   Conclusion  The test results show that the performance of the UHMWPE nozzle is excellent. It has been used in the nuclear power plant for one and a half years, after continuous operation, no scour deformation and corrosion phenomena were found. Therefore, it is feasible to use it in the CFI system of nuclear power plant, which can replace the original imported nylon nozzle.
  • [1] 林金旭, 廖雪波, 蒋林中, 等. 某核电厂鼓形滤网腐蚀原因分析 [J]. 全面腐蚀控制, 2015, 29(7): 30-32+51. DOI:  10.13726/j.cnki.11-2706/tq.2015.07.030.03.

    LIN J X, LIAO X B, JIANG L Z, et al. Analysis on corrosion causes of drum strainer in a nuclear power plant [J]. Total Corrosion Control, 2015, 29(7): 30-32+51. DOI:  10.13726/j.cnki.11-2706/tq.2015.07.030.03.
    [2] 黄海华. 新形势下的沿海核电厂址选择 [J]. 南方能源建设, 2019, 6(1): 71-75. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.012.

    HUANG H H. Selection of coastal nuclear power plants under current situation [J]. Southern Energy Construction, 2019, 6(1): 71-75. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.012.
    [3] 贾有根, 蒋晓红, 张浩然, 等. 核电站海水蝶阀蝶板腐蚀原因分析及改进实践 [J]. 南方能源建设, 2017, 4(4): 108-112. DOI:  10.16516/j.gedi.issn2095-8676.2017.04.020.

    JIA Y G, JIANG X X, ZHANG H R, et al. Analysis and improvement of corrosion cause of seawater butterfly valve disc in nuclear power station [J]. Southern Energy Construction, 2017, 4(4): 108-112. DOI:  10.16516/j.gedi.issn2095-8676.2017.04.020.
    [4] 许睿, 薛平, 马海霞, 等. 尼龙6改性超高分子量聚乙烯 [J]. 工程塑料应用, 2017, 45(8): 29-33. DOI:  10.3969/j.issn.1001-3539.2017.08.007.

    XU R, XUE P, MA H X, et al. Ultra high molecular weight polyethylene modified by nylon 6 [J]. Engineering Plastics Application, 2017, 45(8): 29-33. DOI:  10.3969/j.issn.1001-3539.2017.08.007.
    [5] 何继敏, 薛平, 何亚东. 超高分子量聚乙烯管材性能分析与比较 [J]. 现代塑料加工应用, 2000(1): 58-60.

    HE J M, XUE P, HE Y D. Performance analysis and comparison of ultra-high molecular weight polyethylene pipe [J]. Modern Plastics Processing and Applications, 2000(1): 58-60.
    [6] 孙振国. 超高分子量聚乙烯塑料管道 [J]. 新型建筑材料, 2000(3): 18-20. DOI:  10.3969/j.issn.1001-702X.2000.03.008.

    SUN Z G. Ultra high molecular weight polyethylene plastic pipe [J]. Chemical Building Materials, 2000(3): 18-20. DOI:  10.3969/j.issn.1001-702X.2000.03.008.
    [7] 王新威, 张玉梅, 孙勇飞, 等. 超高分子量聚乙烯材料的研究进展 [J]. 化工进展, 2020, 39(9): 3403-3420. DOI:  10.16085/j.issn.1000-6613.2020-0491.

    WANG X W, ZHANG Y M, SUN Y F, et al. Research progress of ultra high molecular weight polyethylene [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3403-3420. DOI:  10.16085/j.issn.1000-6613.2020-0491.
    [8] 范招军, 陈晓萌, 王文. 复合材料摩擦磨损试验 [J]. 计量与测试技术, 2017, 44(12): 25-27+29. DOI:  10.15988/j.cnki.1004-6941.2017.12.011.

    FAN Z J, CHEN X M, WANG W. Friction and wear test of composite materials [J]. Metrology & Measurement Technique, 2017, 44(12): 25-27+29. DOI:  10.15988/j.cnki.1004-6941.2017.12.011.
    [9] 夏晋程, 李志, 叶纯麟. 超高分子量聚乙烯树脂材料的砂浆磨损特性研究 [J]. 化学世界, 2019, 60(1): 36-44. DOI:  10.19500/j.cnki.0367-6358.20180105.

    XIA J C, LI Z, YE C L. Studies on mortar abrasion properties of ultra-high molecular weight polyethylene resin [J]. Chemical World, 2019, 60(1): 36-44. DOI:  10.19500/j.cnki.0367-6358.20180105.
    [10] 卓昌明. 塑料应用技术手册 [M]. 北京: 机械工业出版社, 2013.

    ZHUO C M. Application technology manual [M]. Beijing: China Machine Press, 2013.
    [11] 樊新民, 车剑飞. 工程塑料及其应用 [M]. 北京: 机械工业出版社, 2016.

    FAN X M, CHE J F. Engineering plastics and applications [M]. Beijing: China Machine Press, 2016.
    [12] 李倩兮, 吴宏武. 超高分子量聚乙烯成型工艺及其加工设备研究进展 [J]. 机械工程材料, 2007, 31(6): 1-5. DOI:  10.3969/j.issn.1000-3738.2007.06.001.

    LI Q X, WU H W. Development of ultrahigh molecular weight polyethylene processing and it's specialized equipment [J]. Materials for Mechanical Engineering, 2007, 31(6): 1-5. DOI:  10.3969/j.issn.1000-3738.2007.06.001.
    [13] 魏洋洋, 袁寿其, 李红, 等. 异形喷嘴变量喷头水力性能试验 [J]. 农业机械学报, 2011, 42(7): 70-74. DOI:  10.3969/j.issn.1000-1298.2011.07.014.

    WEI Y Y, YUAN S Q, LI H, et al. Hydraulic performance experiment of the variable-rate sprinkler with non-circle nozzle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 70-74. DOI:  10.3969/j.issn.1000-1298.2011.07.014.
    [14] 武婕, 张荣勇, 白玮. 核电站循环冷却水系统的瞬态计算分析 [J]. 给水排水, 2016, 52(增刊2): 17-19.

    WU J, ZHANG R Y, BAI W. Transient calculation analysis of cirde cooling water system in nuclear power plant [J]. Water & Wastewater Engineering, 2016, 52(supp. 2): 17-19.
    [15] 姚红, 刘国明. 秦山二期长循环堆芯燃料管理方案设计及其经济性分析 [J]. 南方能源建设, 2016, 3(3): 23-26+15. DOI:  10.16516/j.gedi.issn2095-8676.2016.03.004.

    YAO H, LIU G M. Fuel management study and economic analysis of long-term refueling for qinshan-II NPP [J]. Southern Energy Construction, 2016, 3(3): 23-26+15. DOI:  10.16516/j.gedi.issn2095-8676.2016.03.004.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(4)  / Tables(8)

Article Metrics

Article views(322) PDF downloads(27) Cited by()

Related

Development and Application of UHMWPE Nozzle for Nuclear Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2022.02.019

Abstract:   Introduction  The paper aims to develop a corrosion resistant and wearable ultrahigh molecular weight polyethylene(UHMWPE) nozzle in order to solve the nozzle erosion and corrosion problems of circulating water filtration system(CFI) which is nuclear safety grade 3 system in nuclear power plant.   Method  Through the test of important processing parameters, the nozzle manufacturing process was confirmed. In order to verify the wear resistance and hydraulic performance of the developed nozzle, the wear resistance test of the material was carried out and the scour test and hydraulic test using developed nozzles also have been done.   Result  Test results demonstrate that the UHMWPE nozzle has excellent wear resistance, which is much better than traditional materials. The UHMWPE nozzle can meet the needs of high-speed erosion of nuclear power plants, and its hydraulic performance can also meet the requirements of nuclear power plants.   Conclusion  The test results show that the performance of the UHMWPE nozzle is excellent. It has been used in the nuclear power plant for one and a half years, after continuous operation, no scour deformation and corrosion phenomena were found. Therefore, it is feasible to use it in the CFI system of nuclear power plant, which can replace the original imported nylon nozzle.

Shushan CHEN, Tingshen ZHANG, Sanping XIAO, Qiangtao LI, Minjiang FAN, Zhi LI, Junshan HE. Development and Application of UHMWPE Nozzle for Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 131-136. doi: 10.16516/j.gedi.issn2095-8676.2022.02.019
Citation: Shushan CHEN, Tingshen ZHANG, Sanping XIAO, Qiangtao LI, Minjiang FAN, Zhi LI, Junshan HE. Development and Application of UHMWPE Nozzle for Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 131-136. doi: 10.16516/j.gedi.issn2095-8676.2022.02.019
    • 沿海核电厂的运行需要大量的海水进行冷却,核电厂设置旋转滤网过滤海水保持其洁净,并配置循环水过滤系统(CFI)通过喷嘴向旋转滤网持续喷射高速水流,清洁滤网[1]。目前国内核电厂采用不锈钢喷嘴或进口尼龙喷嘴,而核电厂均位于海边[2],不锈钢喷嘴耐海水腐蚀能力不足[3],尼龙喷嘴耐腐蚀性能虽好,但耐高速水流冲蚀的性能有限,需经常更换。图1为喷嘴与管道组合安装图,每台机组约200个喷嘴。图2是使用过的尼龙喷嘴图片,表1为使用前后喷嘴孔口测量数据,可以看出,运行一段时间以后,喷嘴由于磨损,初始的扇形流道磨损严重,出现不同程度的扩孔,从现场情况来看,磨蚀严重的喷嘴喷射出的水流不再呈现扇形分布,冲洗范围不能覆盖滤网的完整截面,不利于鼓网冲洗,使滤网堵塞的可能性增大。此外,目前核电厂所采用的尼龙喷嘴为进口产品,价格昂贵,供货周期长。

      Figure 1.  Nozzle and pipe installation picture

      编号旧1旧2旧3旧4旧5旧6旧7旧8旧9旧10新喷嘴
      短轴5.75.04.25.94.25.35.65.25.35.33.8
      长轴8.98.68.08.87.98.38.98.38.48.67.5

      Table 1.  Nozzle laryngeal size comparison mm

      Figure 2.  Used nylon nozzle

      通过调研,UHMWPE材料是一种线性结构的具有优异综合性能的热塑性工程塑料,具有优异的耐磨损、耐化学腐蚀等性能[4]。UHMWPE的耐磨性为塑料之冠,对比几类材料的砂浆磨损指数,UHMWPE的砂浆磨损指数最小[5],其耐磨性是尼龙66的4倍,是碳钢、不锈钢的7~10倍,能抵抗固体颗粒、粉体及固液混合高速摩擦磨损[6]。在加工性方面,UHMWPE加工各种制品的能力不断改进、创新,应用领域和数量逐年提高,国内已经具备较强的加工制造能力[7]

      基于此,本文利用国产UHMWPE材料开发一种既耐海水腐蚀,又耐水流冲刷的喷嘴以满足核电工程需求。本文从材料性能测试、产品制备及性能试验进行描述。

    • 上海化工研究院有限公司的UHMWPE材料制造技术国内领先,基于应用需求,本项目选用了上海化工研究院有限公司聚合制备的UHMWPE Z-300树脂,其力学性能与国际品牌对比见表2

      检验项目样品名检验方法
      Z-300Ticona
      GUR 5129
      三井化学
      L4000
      密度/(g·cm−30.94580.9400.968GB/T 1033.1
      表观密度/(g·cm−30.450.50GB/T 1638
      熔融指数/[g·(10 min)−1)]2.0<0.10GB/T 3682
      特性粘数/(mL·g−117361600GB/T 1632.3
      分子量/
      (×104,Mr)
      33034035~65
      屈服强度/MPa26.920.0GB/T 1040.1
      断裂强度/MPa33.134.041.0
      断裂伸长率/%465420.012

      Table 2.  Comparison of domestic UHMWPE resin and foreign famous brand resin performance

      通过表2可以看出国产树脂在力学性能方面与Ticona公司产品相近,优于日本三井化学产品;在可加工性能方面日本三井化学产品最优,但是由于日本三井化学制品分子量仅为35~65×104 g/mol左右,力学性能一般;国产注塑级树脂粘均分子量达到 330×104 g/mol,仍然具备2.0 g/10 min的熔融指数(MFR),因此选用Z-300作为本项目的喷嘴制作树脂,兼顾成型性能及力学性能。

    • 喷嘴在使用过程中,需连续运行18个月,为确保产品的可靠性,针对UHMWPE材料的耐磨性能分别开展滚动磨损试验、砂浆磨损试验。另外,考虑高分子材料老化的影响,开展老化试验,测试其强度变化,相关试验的情况介绍如下。

      1)滚动磨损试验

      为横向比较材料的耐磨特性,委托国家能源核电非金属材料实验室对尼龙材料、高密度聚乙烯(HDPE)材料、以及UHMWPE材料开展滚动磨损试验[8],试验数据见表3。在滚动磨损试验下,UHMWPE的磨损体积小于HDPE和尼龙,耐磨性最好。

      项目HDPE尼龙UHMWPE检测标准
      磨损质量/g0.040 70.071 20.036ISO 5470
      密度/(g·cm−30.9491.3010.944GB/T 1033.1
      磨损体积/cm30.042 90.054 70.038 1

      Table 3.  Roll abrasion test result

      2)砂浆磨损试验

      由聚烯烃催化技术与高性能材料国家重点实验室对尼龙材料、UHMWPE材料开展砂浆磨损试验,采用水和砂子混合物,对材料开展高速砂浆磨蚀[9],试验数据见表4,表中磨损指数越小,耐磨性越好。砂浆磨损试验中,UHMWPE材料耐磨性大大优于尼龙材料。此试验采用砂、水配比作为试验介质,能够很好的反应现场运行工况。

      测试项目UHMWPE尼龙测试标准
      磨损指数238548ISO 15527

      Table 4.  Slurry abrasion test result

      3)老化性能试验

      UHMWPE材料具有良好的耐冲击性和拉伸强度。冲击强度约为聚碳酸酯的2倍,丙烯腈-丁二烯-苯乙烯共聚物(ABS)的5倍,尼龙的10余倍[10]。考虑老化对材料的影响,在−25 ℃~80 ℃进行热循环250次,历时250 h,得出热老化试验数据见表5。由表5可知,老化前后材料的性能基本没有变化,具有优良得耐老化性能。

      性能参数老化前老化后检测标准
      屈服强度/MPa27.3027.06GB/T 1040
      拉伸强度/MPa31.3631.22
      断裂伸长率/%578.5553.8

      Table 5.  UHMWPE aging test data comparison

      同时,UHMWPE材料的拉伸强度达到30 MPa左右,断裂伸长率大于300%,具有良的韧性[11],核电厂冲洗喷嘴的使用压力一般小于1 MPa,其强度可满足喷嘴的使用要求。

    • UHMWPE材料线性长分子链结构赋予其优异的综合性能,但长分子链结构也导致其熔体粘度极高,其加工成型难度大[12],一般加工方式有模压、机加工、注塑等。UHMWPE精密零部件仅仅依靠模压成型或者机械加工实现,效率低、成本高昂,且尺寸精确度无法达到应用需求,考虑本项目研制喷嘴对精度要求高,本项目选择了注塑成型工艺用于制备核电用喷嘴。

      注塑成型的工艺参数直接影响成品的质量,工艺探索过程中主要针对注塑速率、模具温度、冷却时间进行多轮次试验。首先优化选择本项目注射速率,研究发现随着注射速率提升,UHMWPE熔体的剪切速率逐渐升高,在注塑机提供强剪切的情况下,高分子趋向于在流动方向取向,这种在流动方向发生取向的现象的外在宏观表现就是熔体黏度下降,注射时间降低,在本项目中注射速率超过60%之后,注射时间下降趋于平缓,从表6也可以看出,注射时间基本稳定在2.0 s左右,因此选择最佳注射速率为额定注射速率的60%为最大注射速率。

      注射速率填充时间/s峰值压力/MPa熔料压力/MPa剪切速率/105s−1
      5%19.3960.880.80.101
      10%9.862.683.40.202
      15%6.6866.888.40.305
      20%5.0670.993.30.408
      25%4.0874.597.70.495
      30%3.3978.8102.80.881
      35%2.9382.6107.41.698
      40%2.5985.9111.52.745
      45%2.2988.3114.73.893
      50%2.0993.5120.75.926
      60%1.9898.5126.56.238
      70%1.85105.6134.46.182
      80%1.83110.5140.16.158
      90%1.80119.5149.96.100

      Table 6.  Effects of injection rate on products

      其次,分析模具温度对成型制品的影响。试验各种模具温度对注塑成型制品表面质量的影响见表7,可以看出,随着模具温度的增加,注塑成型制品表面光滑度增加,在模具温度增加到60 ℃之后,注塑制品的外观合格率达到40%,在模具温度增加到80 ℃之后,注塑制品的外观合格率达到100%,因此本项目模具温度选定为80 ℃。

      模具
      温度
      第一
      模次
      第二
      模次
      第三
      模次
      第四
      模次
      第五
      模次
      综合
      20NONONONONONO
      30NONONONONONO
      40NONONONONONO
      50NONONONONONO
      60NONOOKNOOKNO
      70OKOKNOOKNONO
      80OKOKOKOKOKOK
      90OKOKOKOKOKOK
      100OKOKOKOKOKOK

      Table 7.  Effect of mold temperature on product surface quality

      最后,分析冷却时间对制品的影响,试验不同冷却时间制品尺寸的变化,数据见表8。由表8可见,随着冷却时间的增加,注塑成型制品尺寸逐渐下降,这主要是由于随着冷却结晶的进行,注塑制品尺寸逐渐收缩,在冷却时间达到150 s之后,注塑制品的尺寸趋于平稳,因此本项目冷却时间选定为150 s。

      冷却时
      间/s
      第一模次/mm第二模次/mm第三模次/mm平均尺寸/mm
      1024.9824.8824.8624.91
      4024.4524.4524.524.47
      7024.1524.1824.1824.17
      10024.0224.0824.0624.05
      13023.8623.9023.6923.82
      15023.6823.7023.7023.69
      17023.5923.7023.5923.63
      19023.5523.7023.7023.65
      18023.5823.5823.7023.62

      Table 8.  Effect of cooling time on the size of products

      在各主要工艺参数确定的基础上,采用自主开发的动态锁模技术,通过注塑模具制作喷嘴样件。

    • 为验证成品的耐冲刷性能,开展高压冲刷试验。另外,为验证开发的喷嘴水力特性满足要求,进行综合水力试验,获取流量压力性能参数。

    • 试验采用6个喷嘴进行冲刷试验,其中包含了UHMWPE喷嘴和原进口尼龙喷嘴。试验在一段管道的侧面安装六个喷嘴,试验系统压力为1.3 MPa,远高于电厂正常运行压力0.5 MPa,累计冲刷600 h,进行极限试验,最后通过重量变化量对比磨损量,试验结果为超高分子量聚乙烯喷嘴的重量变化率为0.2%~0.267%,而尼龙的重量变化率为1.687%,验证了UHMWPE喷嘴优良的耐磨性能,优于原进口产品。

    • 为验证喷嘴的水力特性参数,建造水力试验台架,开展了43个喷嘴的大型水力试验,用于测量喷嘴的流量压力数据[13]。试验台架如图3所示,通过测量得到各压力下的流量数据。 结合某核电厂的系统配置数据,采用AFT Fathom软件对CFI系统进行水力学建模,详细模拟系统的泵、阀、喷嘴、管道管件等部件[14],将喷嘴流量压力试验结果数据代入AFT水力学模型进行计算,结果表明,喷嘴的水力性能达到核电厂旋转滤网冲洗需求。

      Figure 3.  Overall hydraulic test equipment

      通过各项试验及软件模拟计算,验证了所开发的喷嘴可以满足电站使用的需求。

    • UHMWPE材料是优良的耐腐蚀、抗磨蚀材料,但其熔体低流动性对产品制造的影响很大,在产品制备工艺摸索过程中,需充分考虑产品的结构形状,设计合理的工艺参数以及模具流道。并在应用前设计合适的试验,验证试制产品的性能。

    • UHMWPE喷嘴研发成功以后,在国内某核电厂进行了应用,在运行过程中观察运行情况,喷射情况良好,如图4所示。运行一个换料周期(18个月)后[15],拆卸部件进行检查,喷嘴无冲刷扩孔现象,完美达到了其功能要求。

      Figure 4.  Nozzle operation in nuclear power plant

    • 1)本文研发的UHMWPE喷嘴使用效果良好,解决了数十年来该部件依赖国外进口的问题,成本和供货周期更加可控。

      2)通过滚动磨损试验,砂浆磨损试验以及水力冲刷试验充分论证了UHMWPE材料的耐磨性,在有冲刷、磨蚀的场合,此材料是很好的选择。

      3)在后续进一步的运行数据累积验证后,该产品具备各核电基地批量使用的条件。

      4)基于UHMWPE优良的材料性能,可结合本文思路,研发新产品,替代更多的传统材料,促进核电厂的技术革新。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return