[1] |
黄畅, 张攀, 王卫良, 等. 燃煤发电产业升级支撑我国节能减排与碳中和国家战略 [J]. 热力发电, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004. |
HUANG C, ZHANG P, WANG W L, et al. Coal-fired power generation industry upgrade to support China's energy conservation and carbon neutral national strategy [J]. Thermal Power Generation, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004. |
[2] |
方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展 [J]. 华电技术, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008. |
FANG X, PENG X F, ZHANG K, et al. Research progress of cold-end waste energy heating retrofit in coal-fired cogeneration systems [J]. Huadian Technology, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008. |
[3] |
王金星, 卓建坤, 李菁, 等. 适应燃煤电厂灵活调峰的安全改造技术探讨 [C]. 北京能源与环境学会. 2018火电灵活性改造及深度调峰技术交流研讨会论文集. 北京能源与环境学会: 北京中能联创信息咨询有限公司, 2018: 31-37. |
[4] |
张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. |
ZHANG Y, WEI S Z, REN X W, et al. Study on the heating scheme of wind power-extraction condensing unit coupled system [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. |
[5] |
王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. |
WANG J X, HAO J, LIU C, et al. Study on the flexibility of expanding cogeneration load ratio in pumped condensing unit cogeneration system [J]. Thermal Power Generation, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. |
[6] |
天罡, 刘立华, 黄智, 等. 350 MW机组低压缸切除供热改造方案及调峰性能分析 [J]. 汽轮机技术, 2019, 61(6): 457-460. DOI: 10.3969/j.issn.1001-5884.2019.06.014. |
TIAN G, LIU L H, HUANG Z, et al. Reconstruction scheme of removing low pressure cylinder and heating for 350 MW unit analysis of peak regulation performance [J]. Turbine Technology, 2019, 61(6): 457-460. DOI: 10.3969/j.issn.1001-5884.2019.06.014. |
[7] |
刘双白, 张晶, 吴昕, 等. 320 MW机组低压缸零出力性能分析及应用研究 [J]. 中国电力, 2021, 54(5): 213-220. DOI: 10.11930/j.issn.1004-9649.202101053. |
LIU S B, ZHANG J, WU X, et al. Performance analysis and application study of zero output of low pressure cylinder in 320 MW unit [J]. Electric Power, 2021, 54(5): 213-220. DOI: 10.11930/j.issn.1004-9649.202101053. |
[8] |
GE W C, LIU D B, DENG G N, et al. Optimal dispatching strategy in the domain with energy storage and heat storage taking into account deep regulation of thermal power plants [J]. IOP Conference Series:Earth and Environmental Science, 2021, 675(1): 012145. DOI: 10.1088/1755-1315/675/1/012145. |
[9] |
TAN K M, BABU T S, RAMACHANDARAMURTHY V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration [J]. Journal of Energy Storage, 2021, 39: 102591. DOI: 10.1016/j.est.2021.102591. |
[10] |
何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. |
HE L X, LI W Y. Simulation analysis of primary frequency regulation process of flywheel energy storage assisted thermal power units [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. |
[11] |
HAMIDPOUR H, AGHAEI J, PIROUZI S, et al. Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs [J]. IET Renewable Power Generation, 2019, 13(11): 1862-1872. DOI: 10.1049/iet-rpg.2019.0020. |
[12] |
YUAN J H, NA C N, LEI Q, et al. Coal use for power generation in China [J]. Resources, Conservation and Re-cycling, 2018, 129: 443-453. DOI: 10.1016/j.resconrec.2016.03.021. |
[13] |
张兴, 阮鹏, 张柳丽, 等. 飞轮储能在华中区域火电调频中的应用分析 [J]. 储能科学与技术, 2021, 10(5): 1694-1700. DOI: 10.19799/j.cnki.2095-4239.2021.0277. |
ZHANG X, RUAN P, ZHANG L L, et, al. Analysis of the application of flywheel energy storage in the frequency regulation of thermal power in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. DOI: 10.19799/j.cnki.2095-4239.2021.0277. |
[14] |
陈银丽. 热电联产的供热运行调节方式及热电分产能源效率对比 [J]. 低碳世界, 2020, 10(1): 54-55. DOI: 10.3969/j.issn.2095-2066.2020.01.033. |
CHEN Y L. Heating operation regulation of cogeneration and comparison of energy efficiency of cogeneration [J]. Low Carbon World, 2020, 10(1): 54-55. DOI: 10.3969/j.issn.2095-2066.2020.01.033. |
[15] |
王金星. 大型燃煤热电联产系统研究现状和展望 [J]. 华北电力大学学报(自然科学版), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12. |
WANG J X. Research status and prospect for large coal-fired combined heat and power generation system [J]. Journal of North China Electric Power University(Natural Science Edition), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12. |
[16] |
郭海涛, 刘力, 王静怡. 2020年中国能源政策回顾与2021年调整方向研判 [J]. 国际石油经济, 2021, 29(2): 53-61. DOI: 10.3969/j.issn.1004-7298.2021.02.007. |
GUO H T, LIU L, WANG J Y. Review of China's energy policy in 2020 and study of adjustment direction in 2021 [J]. International Petroleum Economics, 2021, 29(2): 53-61. DOI: 10.3969/j.issn.1004-7298.2021.02.007. |
[17] |
刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究 [J]. 北京理工大学学报(社会科学版), 2021, 23(3): 1-8. DOI: 10.15918/j.jbitss1009-3370.2021.7522. |
LIU X L, CUI L L, LI B, et al. Study on the path of China's energy quality development under the carbon neutrality target [J]. Journal of Beijing University of Technology (Social Science Edition), 2021, 23(3): 1-8. DOI: 10.15918/j.jbitss1009-3370.2021.7522. |
[18] |
高虎. “双碳”目标下中国能源转型路径思考 [J]. 国际石油经济, 2021, 29(3): 1-6. DOI: 10.3969/j.issn.1004-7298.2021.03.001. |
GAO H. China's energy transformation under the targets of peaking carbon emissions and carbon neutral [J]. International Petroleum Economics, 2021, 29(3): 1-6. DOI: 10.3969/j.issn.1004-7298.2021.03.001. |
[19] |
杨挺, 于亚利, 张亚健, 等. 计及热电耦合的太阳能联产系统功率协调控制 [J]. 电网技术, 2020, 44(9): 3433-3440. DOI: 10.13335/j.1000-3673.pst.2019.1391. |
YANG T, YU Y L, ZHANG Y J, et al. Coordination control for integrated solar combined cycle with thermoelectric coupling [J]. Power System Technology, 2020, 44(9): 3433-3440. DOI: 10.13335/j.1000-3673.pst.2019.1391. |
[20] |
NURDAN BURGU, Haluk GÖZDE, M Cengiz TAPLAMACIOĞLU. Efficiency optimization of combined heat and power system integrated with renewable energy for a hospital [J]. International Journal of Multidisciplinary Studies and Innovative Technologies, 2019, 3(1): 76-81. |
[21] |
KANG S S, LI H Q, LIU L F, et al. Exergy analysis of a novel CHP–GSHP coupling system [J]. Applied Thermal Engineering, 2016, 93: 308-314. DOI: 10.1016/j.applthermaleng.2015.09.039. |
[22] |
MCDANIEL B, KOSANOVIC D. Modeling of combined heat and power plant performance with seasonal thermal energy storage [J]. Journal of Energy Storage, 2016, 7: 13-23. DOI: 10.1016/j.est.2016.04.006. |
[23] |
于波, 沈啸轩. 浅谈基于混合储能的光伏发电并网系统的能量管理及协调控制 [J]. 中国设备工程, 2021(13): 194-195. DOI: 10.3969/j.issn.1671-0711.2021.13.118. |
YU B, SHEN X X. Introduction to energy management and coordinated control of grid-connected PV power generation system based on hybrid energy storage [J]. China Plant Engineering, 2021(13): 194-195. DOI: 10.3969/j.issn.1671-0711.2021.13.118. |
[24] |
汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势 [J]. 科学通报, 2017, 62(15): 1602-1610. DOI: 10.1360/N972016-00663. |
WANG X, CHEN H S, XU Y J. Research progress and trends in thermal storage technology [J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. DOI: 10.1360/N972016-00663. |
[25] |
李廷贤, 李卉, 闫霆, 等. 大容量热化学吸附储热原理及性能分析 [J]. 储能科学与技术, 2014, 3(3): 236-243. DOI: 10.3969/j.issn.2095-4239.2014.03.008. |
LI T X, LI H, YAN T, et al. Principle and performance analysis of large capacity thermochemical adsorption thermal storage [J]. Energy Storage Science and Technology, 2014, 3(3): 236-243. DOI: 10.3969/j.issn.2095-4239.2014.03.008. |
[26] |
李磊. 熔盐储热技术在光热电站中的应用 [J]. 能源与环境, 2018(5): 26-28. DOI: 10.3969/j.issn.1672-9064.2018.05.012. |
LI L. Application of molten salt thermal storage technology in solar thermal power plants [J]. Energy and Environment, 2018(5): 26-28. DOI: 10.3969/j.issn.1672-9064.2018.05.012. |
[27] |
周宇涵. 熔盐蓄热供热技术研究与示范项目 [J]. 区域供热, 2021(3): 129-133. DOI: 10.16641/j.cnki.cn11-3241/tk.2021.03.023. |
ZHOU Y H. Research and demonstration project of molten salt heat storage heating technology [J]. District Heating, 2021(3): 129-133. DOI: 10.16641/j.cnki.cn11-3241/tk.2021.03.023. |
[28] |
徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展 [J]. 储能科学与技术, 2014, 3(3): 179-190. DOI: 10.3969/j.issn.2095-4239.2014.03.02. |
XU Z G, ZHAO C Y, JI Y N, et al. Research progress of medium and low temperature phase change thermal storage [J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. DOI: 10.3969/j.issn.2095-4239.2014.03.02. |
[29] |
张永锋, 俞越, 张宾, 等. 铅酸电池现状及发展 [J]. 蓄电池, 2021, 58(1): 27-31. DOI: 10.16679/j.cnki.21-1121.2021.01.007. |
ZHANG Y F, YU Y, ZHANG B, et al. Current status and development of lead-acid batteries [J]. Chinese LABAT Man, 2021, 58(1): 27-31. DOI: 10.16679/j.cnki.21-1121.2021.01.007. |
[30] |
POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: materials and devices [J]. Journal of Energy Storage, 2019, 21: 801-825. DOI: 10.1016/j.est.2019.01.010. |
[31] |
RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology [J]. Nano Energy, 2018, 52: 441-473. DOI: 10.1016/j.nanoen.2018.08.013. |
[32] |
张明勋, 丛鹏, 刘光辉. 电池储能技术在电力系统中的应用 [J]. 通信电源技术, 2020, 37(11): 121-123. DOI: 10.3969/j.issn.1008-9772.2018.05.185. |
ZHANG M X, CONG P, LIU G H. Application of battery energy storage technology in power systems [J]. Telecom Power Technology, 2020, 37(11): 121-123. DOI: 10.3969/j.issn.1008-9772.2018.05.185. |
[33] |
鞠立华. 飞轮储能系统机电耦合非线性动力学研究 [D]. 南京: 东南大学, 2005. DOI: 10.7666/d.y943415. |
JU L H. Study of electromechanical coupling nonlinear dynamics of flywheel energy storage system [D]. Nanjing: Southeast University, 2005. DOI: 10.7666/d.y943415. |
[34] |
戴兴建, 卫海岗, 沈祖培. 储能飞轮支承系统进动模态阻尼研究 [J]. 振动工程学报, 2002(1): 102-105. DOI: 10.3969/j.issn.1004-4523.2002.01.020. |
DAI X J, WEI H G, SHEN Z P. Study on the damping of energy storage flywheel support system into the dynamic mode [J]. Journal of Vibration Engineering, 2002(1): 102-105. DOI: 10.3969/j.issn.1004-4523.2002.01.020. |
[35] |
刘付成, 李结冻, 李延宝, 等. 磁悬浮储能飞轮技术研究及应用示范 [J]. 上海节能, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005. |
LIU F C, LI J D, LI Y B, et al. Research and application demonstration of magnetic levitation energy storage flywheel technology [J]. Shanghai Energy Conservation, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005. |
[36] |
詹三一, 唐跃进, 李敬东, 等. 超导磁悬浮飞轮储能的基本原理和发展现状 [J]. 电力系统自动化, 2001(16): 67-72. DOI: 10.3321/j.issn:1000-1026.2001.16.017. |
ZHAN S Y, TANG Y J, LI J D. The basic principle and development status of superconducting magnetic levitation flywheel energy storage [J]. Automation of Electric Power Systems, 2001(16): 67-72. DOI: 10.3321/j.issn:1000-1026.2001.16.017. |
[37] |
王睿佳. 飞轮储能在电力系统的应用和发展前景 [J]. 中国电业, 2021(5): 21-23. |
WANG R J. Application and development prospect of flywheel energy storage in power system [J]. China Electric Power, 2021(5): 21-23. |
[38] |
牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用 [J]. 热力发电, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053. |
MOU C H, WU P Y, SUN G H, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system [J]. Thermal Power Generation, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053. |
[39] |
隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究 [J]. 中国电机工程学报, 2020, 40(8): 2597-2606. DOI: 10.13334/j.0258-8013.pcsee.190921. |
SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on the dynamic process of frequency regulation of flywheel energy storage assisted coal-fired units [J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. DOI: 10.13334/j.0258-8013.pcsee.190921. |
[40] |
马成龙, 隋云任. 飞轮储能系统辅助调频的参数配置和经济性分析 [J]. 节能, 2020, 39(10): 25-29. DOI: 10.3969/j.issn.1004-7948.2020.10.009. |
MA C L, SUI Y R. Parameter configuration and economic analysis of auxiliary frequency regulation of flywheel energy storage system [J]. Energy Conservation, 2020, 39(10): 25-29. DOI: 10.3969/j.issn.1004-7948.2020.10.009. |
[41] |
崔杨, 杨志文, 仲悟之, 等. 基于成本最优的含储热光热电站与火电机组联合出力日前调度 [J]. 电力自动化设备, 2019, 39(2): 71-77. DOI: 10.16081/j.issn.1006-6047.2019.02.011. |
CUI Y, YANG Z W, ZHONG W Z, et al. Day-ahead dispatch for output of combined CSP with thermal storage system and thermal power units based on minimized operation cost [J]. Electric Power Automation Equipment, 2019, 39(2): 71-77. DOI: 10.16081/j.issn.1006-6047.2019.02.011. |
[42] |
郑明. 1 000 MW火电机组汽轮机控制系统分析与设计 [D]. 北京: 华北电力大学(北京), 2017. DOI: 10.7666/d.Y3262993. |
ZHENG M. Analysis and design of 1 000 MW coal fired steam turbine control system [D]. Beijing: North China Electric Power University(Beijing), 2017. DOI: 10.7666/d.Y3262993. |