• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 9 Issue S2
Jan.  2023
Turn off MathJax
Article Contents

ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.002
Citation: ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.002

Research on Fatigue Performance of Grouted Connections Based on Markov Matrix

doi: 10.16516/j.gedi.issn2095-8676.2022.S2.002
  • Received Date: 2022-04-19
  • Rev Recd Date: 2022-07-20
  • Available Online: 2023-01-04
  • Publish Date: 2023-01-04
  •   Introduction  Due to the time variability and randomness of load, the fatigue problem of grouted connections in offshore wind power is serious and it is necessary to research into the fatigue performance of grouted connections to ensure its safety operation.  Method  Based on the finite element numerical model, the Markov load matrix was transformed into the stress at the key position of the grouted connections in this study, and combined with the S-N curve of materials and the linear cumulative damage rule, the fatigue performance of the grouted connections was evaluated.  Result  The finite element model of grouted connections shows that the cumulative damage of steel materials under axial load is greater than that of grouting materials, but less than the limit of DNV specification.  Conclusion  This study shows that fatigue failure will not occur in the two materials in the grouted connections under the specific load, the structure of turbine is safe, and the analysis method is effective.
  • [1] 刘东华, 元国凯, 陈涛, 等. 海上风电灌浆连接段疲劳机理研究综述 [J]. 南方能源建设, 2016, 3(增刊1): 68-72. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.015.

    LIU D H, YUAN G K, CHEN T, et al. Review on fatigue mechanism of grouted connection in offshore wind farm [J]. Southern Energy Construction, 2016, 3(Supp. 1): 68-72. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.015.
    [2] ČERVENKA, J., ČERVENKA, V., PRYL D. Fatigue assessment of grouted connections from high-strength concrete in offshore wind power plants[C]//Czech Concrete Society. 20th Czech Concrete Day, Hradec Kralove, Nov. 27-28, 2013. Hradec Kralove: Czech Concrete Society, 2013: 1–6.
    [3] International Federation for Structural Concrete. Fib model code for concrete structures 2010 [M]. Lausanne: Wiley, 2013. DOI: 10.1002/9783433604090.
    [4] WILKE F. Load bearing behaviour of grouted joints subjected to predominant bending [D]. Aachen: Shaker Verlag Gmbh, 2014.
    [5] SCHAUMANN P, LOCHTE-HOLTGREVEN S. Schädigungsmodell für hybride verbindungen in offshore-windenergieanlagen [J]. Stahlbau, 2011, 80(4): 226-232. DOI:  10.1002/stab.201101414.
    [6] LÖHNING T, MUURHOLM U. Design of grouted connections in offshore wind turbines [C]//IABSE Conference. Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands, May 6-8, 2013. Rotterdam: Assessment, Upgrading and Refurbishment of Infrastructures, 2013: 410-411. DOI: 10.2749/222137813806501821.
    [7] DE JONGE J B. The analysis of load time histories by means of counting methods[R]. Amsterdam: National Aerospace Laboratory NLR, 1982.
    [8] DNV G L. Support structures for wind turbines: DNVGL-ST—0126 [S]. Norway: DNVGL, 2018.
    [9] 元国凯, 汤东升, 刘晋超, 等. 海上风电机组基础灌浆技术应用与发展 [J]. 南方能源建设, 2017, 4(1): 10-17. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.002.

    YUAN G K, TANG D S, LIU J C, et al. Grouting technology application and development in offshore wind farm [J]. Southern Energy Construction, 2017, 4(1): 10-17. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.002.
    [10] CHEN T, WANG X, GU X L, et al. Axial compression tests of grouted connections in jacket and monopile offshore wind turbine structures [J]. Engineering Structures, 2019(196): 109330. DOI:  10.1016/j.engstruct.2019.109330.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(9)  / Tables(3)

Article Metrics

Article views(262) PDF downloads(41) Cited by()

Related

Research on Fatigue Performance of Grouted Connections Based on Markov Matrix

doi: 10.16516/j.gedi.issn2095-8676.2022.S2.002

Abstract:   Introduction  Due to the time variability and randomness of load, the fatigue problem of grouted connections in offshore wind power is serious and it is necessary to research into the fatigue performance of grouted connections to ensure its safety operation.  Method  Based on the finite element numerical model, the Markov load matrix was transformed into the stress at the key position of the grouted connections in this study, and combined with the S-N curve of materials and the linear cumulative damage rule, the fatigue performance of the grouted connections was evaluated.  Result  The finite element model of grouted connections shows that the cumulative damage of steel materials under axial load is greater than that of grouting materials, but less than the limit of DNV specification.  Conclusion  This study shows that fatigue failure will not occur in the two materials in the grouted connections under the specific load, the structure of turbine is safe, and the analysis method is effective.

ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.002
Citation: ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.002
    • 在风力发电领域,海上风电技术虽然起步较晚,但已经逐渐成为世界可再生能源发展领域的焦点。海上风机基础与上部结构采用套筒灌浆进行连接的技术,现已成功应用于国外很多海上风电场。然而,灌浆连接段在风浪荷载的作用下,构件的疲劳问题突出:除了钢管连接段处焊缝的疲劳以外,剪力键附近的灌浆料产生较大的应力集中现象,也容易出现疲劳问题[1]。有不少学者提出采用有限元模拟的方法对灌浆连接段的疲劳寿命进行评估。Červenka等[2]基于欧洲模式规范[3]中的整体分析方法,基于整体模型预测灌浆连接段疲劳寿命;Schaumann等[4-5]系统研究灌浆连接段在疲劳极限下的性能评价方法;Löhning[6]建议一种两阶段有限元数值分析方法,获取带剪力键灌浆连接段的应力状态,将马尔科夫矩阵作为起点,通过有限元模型得到的传递函数将荷载幅转化为应力幅,并利用灌浆材料的S-N曲线以及线性损伤累积公式来校核灌浆连接段的疲劳性能。

      本文针对某在建的风电导管架灌浆连接段进行疲劳性能评估。在已知荷载马尔科夫矩阵的基础上,建立考虑剪力键细节的三维有限元模型,获取局部应力状态。随后基于不同的材料疲劳性能曲线,计算损伤指标,获取钢管和灌浆料的损伤值。

    • 为了研究灌浆连接段的疲劳性能,首先需要明确灌浆连接段的所承受的疲劳荷载工况。马尔科夫计数法是由荷兰的学者J.B. de Jonge于1982年提出的[7]。作为一种较为常用的疲劳计数方法,它可以对时程曲线进行统计计数,从而得到时程曲线中各循环荷载出现的次数n,构成马尔科夫矩阵。在马尔科夫矩阵A[i, j]中,矩阵的元素aij表示从荷载水平j到荷载水平i发生的次数n。从荷载水平j到荷载水平i的循环,其荷载范围是U=ji,作为矩阵的行向量;平均值为m=1/2(i+j),作为矩阵的列向量。

    • 对于荷载的时程曲线来说,会存在一些对计数没有帮助的细微震荡,所以在计数前需要对数据进行过滤,将数据在R值(过滤所需幅度值)以下的震荡都忽略不计,可以用图1说明。图中左边是未经过过滤的数据,这些数据可能会有很多峰值和谷值点,但这些数据点变化幅度可能太小,对计数没有帮助,则可以进行数据过滤处理,得到图中右边的光滑曲线,只计入最大的峰值和谷值。

      Figure 1.  Data filtering diagram

    • 马尔科夫计数过程可分为如下的两个阶段。

      阶段1:如图2所示,从Sp−3点开始,如果满足(1)或式(2)中的不等式,则计数Sp−2和Sp−1,在其对应的矩阵的aij和对角元素aji上各加1(ij分别对应于应力水平Sp−2Sp−1)。接着删除Sp−2Sp−1这两个点,从头开始,按相同方法向下计数。

      Figure 2.  Markov counting process stage 1

      $$ S_{{\rm{p}}-2}>S_{{\rm{p}}-3} \;{\rm{and}}\; S_{{\rm{p}}-1} \geqslant S_{{\rm{p}}-3} \;{\rm{and}}\; S_{{\rm{p}}}\geqslant S_{{\rm{p}}-2}$$ (1)
      $$ S_{{\rm{p}}-2}<S_{{\rm{p}}-3} \;{\rm{and}}\; S_{{\rm{p}}-1} \leqslant S_{{\rm{p}}-3} \;{\rm{and}}\; S_{{\rm{p}}}\leqslant S_{{\rm{p}}-2}$$ (2)

      阶段2:将数据序列中剩余数组简单计数,在对应矩阵元素aij上加1。

    • 灌浆连接段在其20年使用期内所承受的疲劳荷载,可以通过马尔科夫矩阵的形式来表征。如图3所示,对于海上风机的灌浆连接段,共有6个马尔科夫荷载矩阵,分别为FXF(轴力)、FYF(水平力)、FZF(水平力)、MXF(扭矩)、MYF(弯矩)、MZF(弯矩)[8]

      Figure 3.  Offshore wind turbine load

      图4所示,可以把马尔科夫矩阵反映到三维坐标轴中,其横坐标表示循环荷载的荷载范围,纵坐标表示循环荷载的中位值,竖坐标表示循环荷载出现的次数。

      Figure 4.  Markov matrix under three-dimensional coordinate

    • 本文以阳江某300 MW海上风电场为例,单台风机功率为5.5 MW,风机基础采用导管架基础[9]。取其中的灌浆连接段原型为实例,按照半结构建立有限元模型,利用数值模拟的方式对灌浆连接段的疲劳性能进行研究。

    • 灌浆连接段的有限元模型主要由内部导管架腿、外部桩管以及两根钢管之间的灌浆料组成。模型的主要尺寸如图5表1所示。实际工程中的剪力键是采用25 mm直径圆钢焊接连接段上,间距为300 mm。剪力键在导管架腿柱的外表面和桩的内表面之间交替布置,目的是形成斜压短柱,以在两根钢管之间传递荷载。

      Figure 5.  Dimension of grouted connection

      内部导管架腿外部桩管连接段长度
      DJLtJLDptpLL1L2L3
      1 900602 400557 7001 0005 7001 000

      Table 1.  Geometrical dimension of numerical models for grouted connections mm

    • 钢材料本构为双线型模型;高强灌浆料采用有限元软件中的混凝土塑性损伤模型(CDP)[10]

      钢材的弹性模量为200 GPa,屈服和极限强度分别为355 MPa和500 MPa,泊松比取值为0.3。高强灌浆料的弹性模量取值为46.8 MPa,抗压强度取值为121.8 MPa,泊松比取值为0.185,断裂能取值为0.175 N/mm。

    • 灌浆连接段的钢管和浆体部分均采用8节点六面体线性缩减积分实体单元(C3D8R单元),并在剪力键位置处加密网格。为了保证计算精度,在厚度方向将钢管划分为3层,灌浆料划分为4层,在环向将整个连接段划分为50层,如图6所示。

      Figure 6.  Meshing of finite element model

      依据几何和荷载条件,数值模型为半模型,对称面定义对称边界条件,钢管模型底部定义为固定端。内钢管圆心上部定义参考点并与顶部平面耦合,参考点上施加外部荷载。不同材料之间的法向接触定义为硬接触,切向方向定义为库伦摩擦模型,参考Lotsberg和DNV的研究成果,摩擦系数μ取值为0.7。

    • 导管架式的灌浆连接段主要承受轴向荷载,根据轴向马尔科夫荷载矩阵,最大的轴向压力为6.983 MN,且灌浆连接段不承受轴向拉力。由于本次建立的模型为半模型,故对参考点施加竖直向下3.5 MN的力。

      为了方便后续对马尔科夫矩阵中的循环荷载进行插值,在分析步中定义固定增量步长,步长为0.001 5,即每一步的荷载增量则为5.25 kN。

    • 图7可以观察到外钢管应力数值从上到下逐渐增大,与之相反,内钢管应力则逐渐减小。相应的外钢管最大Mises应力出现在最下部剪力键下方焊趾处,值为27.11 MPa;而内钢管最大Mises应力则位于最上部剪力键上方焊趾处,值为23.91 MPa。由图8可得,灌浆料在靠近剪力键位置处的第三主应力较大,其最大的第三主应力位于内管的第一个剪力键的下方,大小为−10.76 MPa。

      Figure 7.  Mises stress nephogram of steel structure

      Figure 8.  Third principal stress nephogram of grouting materials

    • 灌浆连接段由钢材和灌浆料组成,对于易出现疲劳破坏的剪力键部位,采用热点应力法进行疲劳寿命预测。

      由于在轴向力作用下,钢管的最大Mises应力位于最下面剪力键的下方焊趾处,故取该位置处的热点应力。具体为根据距离焊趾0.5t、1.5t处的应力进行线性外插计算获得,如图9所示。

      Figure 9.  Hot spot stress at shear key toe calculated by linear extrapolation

      为了实现灌浆连接段钢结构疲劳性能分析,可以利用Python程序提取模型的应力分量;导入马尔科夫荷载矩阵,对应力分量进行插值;然后计算焊接剪力键焊趾处的热点应力;再通过钢结构的S-N曲线求容许荷载循环次数Ni;最后利用线性损伤累积准则求得累积损伤值D

      轴向荷载的马尔科夫矩阵中共1 529个循环荷载,计算得到的相对较大的Di值以及相应的循环荷载如表2所示。

      平均值/MN应力范围/MNniNiDi
      −5.1451.7156.329 2×1041.927×10113.285×10−7
      −5.2151.9952.851 9×1049.076×10103.142×10−7
      −5.2151.8553.575 4×1041.305×10112.739×10−7
      −5.4951.7853.661 2×1041.606×10112.280×10−7
      −5.1451.7853.147 3×1041.577×10111.996×10−7
      −4.3051.3651.099 84×1055.743×10111.915×10−7
      −5.5651.7153.710 4×1041.969×10111.884×10−7
      −5.5651.9251.971 6×1041.105×10111.784×10−7
      −5.5651.8552.280 9×1041.330×10111.715×10−7
      −5.1451.9251.797 5×1041.081×10111.663×10−7

      Table 2.  Damage value Di of steel structure at toe and corresponding cyclic load

      根据累积损伤准则,将1 529个循环荷载下的Di累加,计算得到累积损伤值D为1.785×10−5

    • 灌浆材料最大的第三主应力位于内管第一个剪力键的下方位置处,可以直接提取该位置处单元的第三主应力,再利用与3.2节类似的方法进行疲劳分析。

      在轴向马尔科夫荷载矩阵作用下,计算得到的相对较大的损伤值Di以及相应的循环荷载如表3所示。根据累积损伤准则,将1 529个循环荷载下的Di累加,计算得到累积损伤值D为1.71×10−10

      平均值/MN应力范围/kNniNiDi
      −5.775354.388×1071.156×10193.795×10−12
      −5.705354.390×1071.188×10193.696×10−12
      −5.845354.012×1071.126×10193.563×10−12
      −5.635354.170×1071.220×10193.419×10−12
      −5.355354.395×1071.338×10193.284×10−12
      −5.425354.238×1071.308×10193.241×10−12
      −5.565354.034×1071.248×10193.232×10−12
      −5.495354.104×1071.278×10193.212×10−12
      −5.285354.317×1071.370×10193.151×10−12
      −5.145354.402×1071.435×10193.067×10−12

      Table 3.  Damage value Di of grouting materials at toe and corresponding cyclic load

    • 本文提出了一种基于马尔科夫矩阵的灌浆连接段疲劳分析方法。通过对灌浆连接段有限元模型分析可知,在轴向荷载作用下,钢结构产生的累积损伤值大于灌浆材料,但均小于DNV规范中的限值,说明这两种材料均不会发生疲劳破坏。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return