-
行标DL/T 5044《电力工程直流电源系统设计技术规程》中规定:电缆截面应按电缆长期允许载流量和回路允许电压降两个条件选择[6],并应按下列公式计算:
$$ {I}_{{\rm{pc}}}\geqslant {I}_{{\rm{ca1}}} $$ (1) $$ {S}_{{\rm{cac}}}=\frac{\rho \cdot 2L{I}_{{\rm{ca}}}}{\Delta {U}_{{\rm{p}}}} $$ (2) 式中:
Ipc ——电缆允许载流量(A);
Ica ——回路长期工作计算电流(A);
Scac ——电缆计算截面(mm2);
ρ ——电阻系数,铜导体ρ=0.0184 Ω·mm2/m,铝导体ρ=0.031 Ω·mm2/m;
L ——电缆长度(m);
Ica ——允许电压降计算电流(A);
△Up——回路允许电压降(V)。
-
1)以壳架型式分类:小型直流断路器、塑壳式直流断路器、万能式直流断路器。
2)以保护形式分类:热磁式两段保护(热过载长延时保护、电磁短路瞬时保护)、电子式三段保护(热过载长延时保护、电磁短路瞬时保护、电子式短路短延时保护)、热磁式选择性保护(热过载长延时保护、热式短路短延时限流型反时限保护)。
-
1)热过载保护机理:利用双金属片原理,当温度达到一定值时,双金属片弯曲顶住脱扣机构,使断路器分闸。
2)电磁短路保护:利用螺管式电磁铁的电动力原理,当电流达到整定值时,电动力足够大,驱动脱扣机构。
3)电子式短路短延时保护:通过电子延时装置,控制断路器在短路情况下延时动作。
普通两段保护小型直流断路器应具有过载长延时和短路瞬时两种保护特性。
-
根据直流断路器保护原理,行标DL/T 5044《电力工程直流电源系统设计技术规程》附录A.4规定:
1)对于过负荷长延时保护,上、下级断路器的额定电流或动作电流应满足电流比关系。由于过负荷长延时保护动作曲线为反时限曲线,只要上、下级之间电流比足够大即可满足选择性要求。
2)对于短路瞬时保护,直流断路器应满足本级断路器出口短路时断路器脱扣器瞬时保护可靠动作,下一级断路器出口短路时断路器脱扣器瞬时保护可靠不动作。
-
按国标GB 16895.5《低压电气装置 第4-43部分:安全防护 过电流保护》的规定,导体与过负荷保护电器之间的配合,防止电缆过负荷保护电器的工作特性应满足以下两个条件[11]:
$$ {I}_{{\rm{B}}}\leqslant {I}_{{\rm{n}}}\leqslant {I}_{{\rm{z}}} $$ (3) $$ {I}_{2}\leqslant 1.45{I}_{{\rm{z}}} $$ (4) 式中:
IB ——回路的计算电流(A);
In ——保护电器的额定电流(A);
Iz ——电缆持续载流量(A);
I2 ——保证保护电器在约定时间内可靠动作的电流(A)。
1 kV聚氯乙烯绝缘铜芯电缆持续允许载流量见表1:
电缆导体截面/mm2 载流量/A 2.5 18 4 24 6 31 10 44 16 60 Table 1. Continuous allowable current carrying capacity of 1 kV PVC insulated copper core cable
拟合曲线对应电缆截面S与载流量Iz的关系式:
$$ {I}_{z}=3.1S+11.6 $$ (5) 将式(5)代入式(3)得到:
$$ S\geqslant 0.32{I}_{n}-3.74 $$ (6) 式中:
S ——电缆的截面积(mm2);
In ——断路器额定电流(A)。
-
按行标DL/T 5155《220 kV~1 000 kV变电站站用电设计技术规程》,当短路持续时间≤5 s时,电缆的截面积应符合下列条件[12]:
$$ S\geqslant \dfrac{{I}_{{\rm{d}}}}{k}\times \sqrt{t} $$ (7) 式中:
S ——电缆的截面积(mm2);
Id ——短路电流(A);
t ——断路器切断电流的动作时间(s);
k ——导体温度系数,铜导体绝缘PVC≤300 mm2取115,XLPE取143。
图4为标准型二段式C型脱扣器微型直流断路器的动作特性曲线,取2In、3In、5In、7In四个短路电流值及对应的最大动作时间代入公式(7),得到各短路电流下电缆截面积:
1)额定电流In≤32 A的断路器
2In时动作时间140 s,
${S}\geqslant \dfrac{2{I}_{{\rm{n}}}}{115}\times \sqrt{140}=0.2{I}_{n}$ ;3In时动作时间45 s,
${S}\geqslant \dfrac{3{I}_{{\rm{n}}}}{115}\times \sqrt{45}=0.17{I}_{n}$ ;5In时动作时间15 s,
${S}\geqslant \dfrac{5{I}_{{\rm{n}}}}{115}\times \sqrt{15}=0.17{I}_{n}$ ;7In时动作时间7 s,
${S}\geqslant \dfrac{7{I}_{{\rm{n}}}}{115}\times \sqrt{7}=0.16{I}_{n}$ 。对于2In时动作时间140 s,时间越长,电缆的散热效应越明显,实际所需截面积应小于计算值。
从上述统计可以得到一个工程实用关系式:
$$ {S}\geqslant 0.17{I}_{{\rm{n}}} $$ (8) 2)额定电流In>32 A的断路器
额定电流In>32 A的断路器在上述选取的四个短路电流下的动作时间约为额定电流In≤32 A的断路器的2倍,因此对于额定电流In>32 A的断路器对应的工程实用关系式为:
$$ {S}\geqslant \sqrt{2}\times 0.17{I}_{{\rm{n}}}=0.24{I}_{{\rm{n}}} $$ (9) 从这两个式子可以看出电缆截面与断路器额定电流成正比,与短路电流大小关系不大,这是因为断路器长延时保护为反时限保护,短路电流大则动作时间短,短路电流小则动作时间长,对于电缆截面大小的确定,短路电流与动作时间之间产生部分抵消作用。
-
通过上述统计分析,得到一组电缆截面S与断路器额定电流In的工程实用关系式:
$$ \left\{\begin{array}{l}S\geqslant 0.32{I}_{{\rm{n}}}-3.74\qquad\qquad\qquad\qquad\qquad\qquad(10)\\ S\geqslant 0.17{I}_{{\rm{n}}}({I_{n}}\leqslant 32\;A时)\qquad\qquad\qquad\qquad(11)\\ S\geqslant 0.24{I}_{{\rm{n}}}({I_{{\rm{n}}}}>32\;A时)\qquad\qquad\qquad\qquad(12)\end{array}\right. $$ -
以某500 kV智能变电站为例,直流电压Un为110 V,智能终端安装在GIS室,装置功耗不大于40 W,装置电源电缆长度100 m,允许压降按不大于6.5%Un考虑,电缆截面积计算电流取10 A。
按公式(2)计算电缆截面为5.1 mm2,按工程惯例选4 mm2电缆,虽然电缆压降略大于标准要求,但考虑装置负荷电流只有0.36 A,正常运行时压降满足要求。
本站110 V直流电源系统参数如图5所示,阀控密封式铅酸蓄电池组容量为1 000 Ah,蓄电池组至直流屏距离为30 m。直流屏馈线断路器S2为50 Å标准型二段式C型脱扣器微型直流断路器,智能终端装置电源、遥信电源的S3断路器均为4A标准型二段式C型脱扣器微型直流断路器。
其中,蓄电池组内阻r=7.3 mΩ,电缆L1电阻RL1=6 mΩ,熔断器F1内阻忽略不计,S2断路器内阻RS2=3.8 mΩ,电缆L2电阻RL2=920 mΩ,S3断路器内阻RS3=246 mΩ。
计算可得:d1点短路电流Id1=6 432 A,d2点短路电流Id2=117 A,d3点短路电流Id3=93 A。
S3断路器瞬时脱扣值正误差为15In=60 A,S2断路器瞬时脱扣值负误差为7In=350 A,正误差为15In=750 A。d3点短路时S3可靠动作,S2可靠不动作;d1点短路时S2可靠动作,因此S2与S3配合具有选择性[13-16]。
对于电缆L2末端d2点短路电流Id2(117 A),小于S2断路器瞬时脱扣值负误差(350 A),S2断路器短路瞬时保护不动作;S2断路器过负荷长延时保护动作值为1.45In=72.5 A,S2断路器长延时保护能够动作。
S2断路器额定电流In为50 A,根据公式(10),L2电缆截面应满足SL2≥0.32In−3.74=12.26 mm2;根据公式(12),L2电缆截面应满足SL2≥0.24In=0.24×50=12 mm2,目前选用的4 mm2电缆不满足要求。
这种情况下,一种解决方法是选用大截面电缆,另一种方法是选用合适的断路器。从技术经济以及工程惯例综合考虑将S2断路器额定电流改为20 A,或者选用三段式直流断路器,可以满足级差配合以及电缆运行要求。
-
文章通过实际算例简要介绍了电缆的选择、直流断路器配合的方法。通过数据拟合、曲线统计的方式,分析电缆与断路器的配合关系,得到一组电缆截面与断路器额定电流之间的工程实用关系式。关系式有助于简化电缆热稳定检验校验工作量,并能为今后工程直流电源系统电缆设计提供借鉴。
Coordination Between Cable and Circuit Breaker in DC Power Supply System
doi: 10.16516/j.gedi.issn2095-8676.2022.S2.012
- Received Date: 2021-09-02
- Rev Recd Date: 2021-12-11
- Available Online: 2023-01-04
- Publish Date: 2023-01-04
-
Key words:
- coordination between cable and circuit breaker /
- selection of cable section /
- DC system /
- DC cable /
- DC circuit breaker
Abstract:
Citation: | JIA Hongzhou, PENG Guanyan, LIU Yanhua. Coordination Between Cable and Circuit Breaker in DC Power Supply System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 74-78. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.012 |