-
电解水制氢技术主要有碱性电解水装置、PEM电解装置和固体氧化物电解水装置(Solid Oxide Electrolysis Cell,SOEC)3种。现阶段,我国碱性电解水装置技术成熟,市场份额高,但动态响应速度较慢。PEM电解水装置国内刚刚起步,性能尤其是寿命尚缺少规模化工程化验证,整体上落后于欧美等发达国家。SOEC电解装置采用水蒸汽电解,高温环境下工作,能效最高,但尚处于实验室研发阶段,文章不展开讨论。
-
碱性电解水技术是最为成熟,也是目前应用最广泛的电解水制氢技术[14]。10 Nm3/h级的碱性电解水装置已经在大型电厂发电机氢冷系统中应用多年[15]。随着绿氢产业发展和碱性电解水技术进步,1000 Nm3/h级的碱性电解水装置已成为规模化新能源制氢的主流设备,操作负荷范围也得到大幅提升。由于碱性电解池的阳极和阴极两侧上的压力需时刻保持均衡,以防止氢、氧气穿过多孔的隔膜混合引起爆炸,使得碱性电解槽较难快速的启动和负荷调整,快速跟踪响应风电光伏随机波动电源的能力较弱[16]。近年来随着技术进步,碱性电解水装置对供电负荷波动的响应速度已经有了长足进步。
-
PEM电解水装置因其动态响应速度快、占地面积小、效率高、环保等优点而备受关注。近年来欧盟、北美涌现了很多PEM电解水设备企业,推动了PEM电解技术的发展。2021年以来,国内PEM电解技术有了一定的突破,但与国际先进水平差距较大,正处于从实验室研发向工程化应用转化的阶段[17-18]。PEM电解水装置价格高,限制了其大规模应用,适合在土地有限的大城市、临时场所、独立的产业园区中使用,特别适用于小型制氢项目,如城市的制氢加氢一体站,体积小,装运方便。
-
碱性电解水装置具备工艺技术成熟、投资运营费用低等优势,其劣势在于相比PEM电解水装置在风光波动电源的响应时间和可调范围方面有一定差距。以下将从技术成熟度、效率、动态响应速度、负荷调节范围、经济性等方面对碱性和PEM水电解设备进行比较分析。
-
碱性电解水设备技术成熟度高,在发电机氢冷、晶硅生产、浮法玻璃等领域有大量的应用业绩,我国碱性电解水技术和设备在全球属于领先地位,1000 Nm3/h级碱性电解槽技术逐渐成熟,工程化应用案例全球第一。国内PEM电解水装备处于商业化初期,技术成熟度目前需要工程化验证。
-
稳态运行碱性和PEM电解水装置效率相当;波动负荷运行时,PEM的动态响应速度快,碱性由于电解槽电解反应的迟滞和保温需求,PEM较碱性高5%左右。
-
碱性和PEM电解水装置的动态响应时间如表1所示,碱性电解水的动态响应速度很大程度上受制于电解槽的温度,电解槽热态情况下,碱性电解槽的动态响应速度约是PEM的1/5。
制氢设备 冷态启动
0~100%热态启动
0~100%热态升负荷
50%~100%热态降负荷
100%~50%碱性电解 60 20 10 5 PEM电解 10 5 2 1 Table 1. Dynamic response speed of ALK and PEM
min -
如表2所示,碱性电解水装置负荷调节范围为(20%/25%/35%)~100%,不同厂家给出的调节范围下限不同,低于负荷下限,氧气中的氢杂质含量较高,带来安全隐患。PEM电解水装置调节范围部分厂家给出的数据是0~100%,但在实际运行中,极低负荷下阀门、设备、仪表和控制精度都难以保证,制氢辅助系统用电占比高,制氢效率低,10%负荷运行以下不具有经济性,运行稳定性也难以保证。
负荷调节
范围PEM 碱性 A厂数据 B厂数据 C厂数据 D厂数据 比例值/% 10~125 20~100 20~100 25~100 35~100 Table 2. Load adjustment range of ALK and PEM
大规模商业化工程应用,价格是设备选型的重要考量因素。前文已经描述,PEM设备的单位造价是碱性的3倍,在绿电制氢经济性本身受限的情况下,企业很难承受大规模使用PEM带来的成本增加,降成本是PEM的当务之急。PEM电解水装置组成包括变压器、整流柜、电解槽(电堆)、分离和纯化装置,与碱性电解装备相比差别最大的是电解槽,变压器、整流柜、分离和纯化装置类似,价格相近;碱性电解槽造价约1200元/kW,PEM电解槽(电堆)造价高达5000元/kW。PEM电解是PEM燃料电池的逆反应,当前PEM燃料电池电堆单位造价可降至2000元/kW,虽然PEM电解在电极、催化剂和质子膜等方面有特殊要求,但笔者认为PEM电解未来降价空间可朝着PEM燃料电池电堆价格努力,具有较大降价空间。随着国外PEM制氢设备厂家在国内合资建厂,国产化和规模化带来的成本下降空间可期。风光耦合制氢站在设计时,为加快对新技术新设备创新应用探索、提高制氢系统动态响应速度、掌握工程数据、积累运行经验,在经济条件可行的情况下,可配一定规模的PEM电解水装置示范。
-
目前我国氢气的年产能约3300万t,图3为我国氢气产能分布情况[20]。可以看出当前以灰氢为主的产能分布与我国风光资源分布[21]基本一致,主要集中在三北资源丰富地区。一方面,由于区域分布的一致性,减少了大规模的氢气储运的难度,随着绿氢产能增长,可以实现灰氢向绿氢市场的平稳过渡。另一方面,三北风光资源丰富地区存在电力送出、电力波动等问题,通过大规模制氢,实现资源高价值转化和区域经济内循环;同时,制氢站是重要的可调节负荷,《“十四五”新型储能发展实施方案》将氢能作为新型储能介质,发展可再生能源制储氢(氨)、氢电耦合等氢储能示范应用,通过风光耦合制氢平抑新能源电力波动问题。
Figure 3. Price list of hydrogen production in different methods[20]
制氢价格如表3所示。随着世界百年未有之大变局加速演进,化石燃料价格高企呈常态化趋势,当前煤炭价格已经突破千元/t、进口天然气价格高进入4元/Nm3时代;相比之下风电和集中式光伏造价持续降低,加之碳税、电解水制氢副产氧价值、产品绿氢等因素,可再生能源制绿氢相对于传统煤制氢、天然气制氢已初步具有经济竞争性[22-23]。
煤制氢 天然气制氢 电解水制氢 煤价/
(元·t−1)氢价/
[元·(kg)−1]天然气价/
[元·(Nm)−3]氢价/
[元·(kg)−1]电价/
[元·(kWh)−1]氢价/
[元·(kg)−1]600 10.3 2.0 10.6 - - 800 12.0 2.5 12.6 0.10 11.6 1000 14.0 3.0 14.9 0.15 14.5 1200 16.8 3.5 17.4 0.20 17.4 1400 20.0 4.0 20.3 0.25 20.4 Table 3. Hydrogen price list from different methods
Research on Typical Design of Wind-Solar Coupled Hydrogen Production System
doi: 10.16516/j.gedi.issn2095-8676.2023.03.012
- Received Date: 2023-04-12
- Rev Recd Date: 2023-04-19
- Available Online: 2023-05-04
- Publish Date: 2023-05-10
-
Key words:
- wind-solar coupled /
- hydrogen production /
- alkaline /
- proton exchange membrane /
- design schemes
Abstract:
Citation: | SUN Xiang, LIU Chengliang, NIU Xia, ZHAO Luyao. Research on Typical Design of Wind-Solar Coupled Hydrogen Production System[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 112-119. doi: 10.16516/j.gedi.issn2095-8676.2023.03.012 |