• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 10 Issue 5
Sep.  2023
Turn off MathJax
Article Contents

LAO Zhixuan, ZHENG Bingyao, GUO Fang, MEI Hongdeng, ZHU Wenfeng, WANG Ruiyang, FANG Junjie. Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 65-71. doi: 10.16516/j.gedi.issn2095-8676.2023.05.009
Citation: LAO Zhixuan, ZHENG Bingyao, GUO Fang, MEI Hongdeng, ZHU Wenfeng, WANG Ruiyang, FANG Junjie. Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 65-71. doi: 10.16516/j.gedi.issn2095-8676.2023.05.009

Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology

doi: 10.16516/j.gedi.issn2095-8676.2023.05.009
  • Received Date: 2023-04-30
  • Rev Recd Date: 2023-08-11
  • Available Online: 2023-09-06
  • Publish Date: 2023-09-10
  •   Introduction  With the development of new loads, such as distributed power sources and electric vehicles, DC(Direct Current) microgrids have the advantages of fewer commutation links and lower system losses than AC(Alternating Current) microgrids, and have become the current research hotspot. Due to the small coverage of the DC microgrid and access to a large amount of distributed power sources, the fault current rises quickly with a large amplitude when inter-pole short-circuit fault occurs, making it difficult to achieve differential coordination with traditional overcurrent protection used in AC distribution networks and posing a great challenge to fault localization.   Method  Therefore, in response to the characteristics of fault current in DC microgrids, the method for designing overcurrent protection setting value based on the precise control value of fault current through the integration of current limiting and protection was proposed. Combined with the reasonable capacity design of each branch, it can easily achieve differential coordination and accurately locate faults.   Result  A corresponding DC microgrid model is built on the PSCAD/EMTDC simulation platform. The proposed protection scheme is simulated and verified, and the result shows that the scheme can correctly locate the fault point and quickly remove the fault.   Conclusion  The proposed protection scheme can ensure the selectivity of overcurrent, which verifies the rationality of the scheme.
  • [1] 王鲍雅琼, 陈皓. 含分布式电源的配电网保护改进方案综述 [J]. 电力系统保护与控制, 2017, 45(12): 146-154. DOI:  10.7667/PSPC160926.

    WANG B Y Q, CHEN H. Overview study on improving protection methods of distribution network with distributed generation [J]. Power system protection and control, 2017, 45(12): 146-154. DOI:  10.7667/PSPC160926.
    [2] SARANGI S, SAHU B K, ROUT P K. A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction [J]. International journal of energy research, 2021, 45(4): 5006-5031. DOI:  10.1002/ER.6245.
    [3] HIRSCH A, PARAG Y, GUERRERO J. Microgrids: a review of technologies, key drivers, and outstanding issues [J]. Renewable and sustainable energy reviews, 2018, 90: 402-411. DOI:  10.1016/j.rser.2018.03.040.
    [4] 高海力, 谭建成. 直流微网技术及发展动态 [J]. 电气开关, 2018, 56(4): 8-12. DOI:  10.3969/j.issn.1004-289X.2018.04.003.

    GAO H L, TAN J C. DC micro grid technology and future trends [J]. Electric switcher, 2018, 56(4): 8-12. DOI:  10.3969/j.issn.1004-289X.2018.04.003.
    [5] CHANDRA A, SINGH G K, PANT V. Protection techniques for DC microgrid- a review [J]. Electric power systems research, 2020, 187: 106439. DOI:  10.1016/j.jpgr.2020.106439.
    [6] 李佼洁, 刘毅力, 沈志雨, 等. 一种适用于直流微网的电流差动保护 [J]. 电力科学与技术学报, 2022, 37(1): 55-63. DOI:  10.19781/j.issn.1673-9140.2022.01.007.

    LI J J, LIU Y L, SHEN Z Y, et al. Research on a current differential protection suitable for DC microgrid [J]. Journal of electric power science and technology, 2022, 37(1): 55-63. DOI:  10.19781/j.issn.1673-9140.2022.01.007.
    [7] 李勃, 张孝军, 徐宇新, 等. 基于本地信息的有限选择性直流微电网保护方案 [J]. 智慧电力, 2021, 49(1): 48-55. DOI:  10.3969/j.issn.1673-7598.2021.01.008.

    LI B, ZHANG X J, XU Y X, et al. Protection scheme with limited selectivity for DC microgrid based on local measurement [J]. Smart power, 2021, 49(1): 48-55. DOI:  10.3969/j.issn.1673-7598.2021.01.008.
    [8] 周嘉阳, 李凤婷, 陈伟伟, 等. 基于电容放电特征的柔性直流配电网线路保护方案 [J]. 电力系统保护与控制, 2019, 47(8): 42-48. DOI:  10.7667/PSPC180580.

    ZHOU J Y, LI F T, CHEN W W, et al. Line protection schemes for flexible DC distribution network based on capacitor discharge [J]. Power system protection and control, 2019, 47(8): 42-48. DOI:  10.7667/PSPC180580.
    [9] 李斌, 何佳伟, 冯亚东, 等. 多端柔性直流电网保护关键技术 [J]. 电力系统自动化, 2016, 40(21): 2-12. DOI:  10.7500/AEPS20160601011.

    LI B, HE J W, FENG Y D, et al. Key techniques for protection of multi-terminal flexible DC grid [J]. Automation of electric power systems, 2016, 40(21): 2-12. DOI:  10.7500/AEPS20160601011.
    [10] FLETCHER S D A, NORMAN P J, FONG K, et al. High-speed differential protection for smart DC distribution systems [J]. IEEE transactions on smart grid, 2014, 5(5): 2610-2617. DOI:  10.1109/tsg.2014.2306064.
    [11] 张林, 邰能灵, 刘剑, 等. 直流微电网方向纵联保护方法研究 [J]. 电测与仪表, 2018, 55(20): 1-7. DOI:  10.3969/j.issn.1001-1390.2018.20.001.

    ZHANG L, TAI N L, LIU J, et al. Analysis of directional pilot protection method for DC microgrid [J]. Electrical measurement & instrumentation, 2018, 55(20): 1-7. DOI:  10.3969/j.issn.1001-1390.2018.20.001.
    [12] 龙滕周. 直流微网能量控制和故障保护策略研究 [D]. 徐州: 中国矿业大学, 2021. DOI: 10.27623/d.cnki.gzkyu.2021.001617.

    LONG T Z. Research on energy control and fault protection strategy of DC microgrid [D]. Xuzhou: China University of Mining and Technology, 2021. DOI: 10.27623/d.cnki.gzkyu.2021.001617.
    [13] EMHEMED A A S, FONG K, FLETCHER S, et al. Validation of fast and selective protection scheme for an LVDC distribution network [J]. IEEE transactions on power delivery, 2017, 32(3): 1432-1440. DOI:  10.1109/tpwrd.2016.2593941.
    [14] 薛士敏, 刘存甲, 李蒸, 等. 基于控保协同的环形直流微网测距式保护 [J]. 高电压技术, 2019, 45(10): 3059-3067. DOI:  10.13336/j.1003-6520.hve.20190924004.

    XUE S M, LIU C J, LI Z, et al. Ranging protection of ring DC microgrid system based on control and protection cooperation [J]. High voltage engineering, 2019, 45(10): 3059-3067. DOI:  10.13336/j.1003-6520.hve.20190924004.
    [15] 武旭光. 基于控保协同的低压直流微网故障隔离技术研究 [D]. 天津: 天津大学, 2020. DOI: 10.27356/d.cnki.gtjdu.2020.002382.

    WU X G. Research on fault isolation technology of low voltage DC microgrid [D]. Tianjin: Tianjin University, 2020. DOI: 10.27356/d.cnki.gtjdu.2020.002382.
    [16] 褚旭, 刘琦, 吕昊泽, 等. 基于控保协同海底观测网供电系统保护方案 [J]. 电工技术学报, 2023, 38(7): 1780-1792. DOI:  10.19595/j.cnki.1000-6753.tces.210965.

    CHU X, LIU Q, LÜ H Z, et al. Protection scheme for subsea observatory power supply system based on control and protection coordination [J]. Transactions of China electrotechnical society, 2023, 38(7): 1780-1792. DOI:  10.19595/j.cnki.1000-6753.tces.210965.
    [17] MOKHBERDORAN A, CARVALHO A, LEITE H, et al. A review on HVDC circuit breakers [C]//3rd Renewable Power Generation Conference (RPG 2014), Naples, Italy, September 24-25, 2014. Hertfordshire, UK: IET, 2014: 1-6. DOI: 10.1049/CP.2014.0859.
    [18] 张宏熠. 机电混合式直流断路器关键技术研究 [D]. 黑龙江: 哈尔滨理工大学, 2020. DOI: 10.27063/d.cnki.ghlgu.2020.000522.

    ZHANG H Y. Research on critical technologies of electromechanical hybrid DC circuit breakers [D]. Heilongjiang: Harbin University of Science and Technology, 2020. DOI: 10.27063/d.cnki.ghlgu.2020.000522.
    [19] ZHENG B Y, GUO F, WEN A, et al. Research on DC microgrid protection scheme based on fault current controller [C]//2021 4th International Conference on Electronics and Electrical Engineering Technology, Nanjing, China, December 3-5, 2021. New York, USA: Association for Computing Machinery, 2022: 143-150. DOI: 10.1145/3508297.3508321.
    [20] WEI T L, LI W W, GUO F, et al. Research on fault current control method of DC microgrid battery energy storage system [J]. 2023. DOI: 10.21203/rs.3.rs-2464907/v1.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(7)  / Tables(3)

Article Metrics

Article views(263) PDF downloads(23) Cited by()

Related

Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology

doi: 10.16516/j.gedi.issn2095-8676.2023.05.009

Abstract:   Introduction  With the development of new loads, such as distributed power sources and electric vehicles, DC(Direct Current) microgrids have the advantages of fewer commutation links and lower system losses than AC(Alternating Current) microgrids, and have become the current research hotspot. Due to the small coverage of the DC microgrid and access to a large amount of distributed power sources, the fault current rises quickly with a large amplitude when inter-pole short-circuit fault occurs, making it difficult to achieve differential coordination with traditional overcurrent protection used in AC distribution networks and posing a great challenge to fault localization.   Method  Therefore, in response to the characteristics of fault current in DC microgrids, the method for designing overcurrent protection setting value based on the precise control value of fault current through the integration of current limiting and protection was proposed. Combined with the reasonable capacity design of each branch, it can easily achieve differential coordination and accurately locate faults.   Result  A corresponding DC microgrid model is built on the PSCAD/EMTDC simulation platform. The proposed protection scheme is simulated and verified, and the result shows that the scheme can correctly locate the fault point and quickly remove the fault.   Conclusion  The proposed protection scheme can ensure the selectivity of overcurrent, which verifies the rationality of the scheme.

LAO Zhixuan, ZHENG Bingyao, GUO Fang, MEI Hongdeng, ZHU Wenfeng, WANG Ruiyang, FANG Junjie. Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 65-71. doi: 10.16516/j.gedi.issn2095-8676.2023.05.009
Citation: LAO Zhixuan, ZHENG Bingyao, GUO Fang, MEI Hongdeng, ZHU Wenfeng, WANG Ruiyang, FANG Junjie. Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 65-71. doi: 10.16516/j.gedi.issn2095-8676.2023.05.009
    • 在化石能源日益枯竭和环境污染问题愈加严重的背景下,清洁能源的开发和利用越来越受到人们的关注。而清洁能源接入配电网将对整个配电网潮流流向产生较大影响,最终影响继电保护装置的性能[1-2]。直流微网具有可省去换流环节,降低成本和损耗,负荷不受电压调整等影响的优势,成为国内外学者的研究热点[3-4]。然而,直流微网覆盖面积小,线路长度短,容量小,电压等级低,传统保护技术不能很好地适用。且直流微网在故障下存在电容快速放电、电力电子器件脆弱、保护整定困难等问题,传统的低压配网过流保护级差配合难以实现,很难保证保护的选择性,并不完全适用于直流微网[5],保护技术的滞后使得直流微网的推广和发展受到了限制。

      目前直流微网应用较为广泛的保护方式为单端量保护和基于通信的保护[6]。单端量保护对于故障的检测和定位可能存在困难,很难保证保护的选择性,对直流微网而言误动的可能性较大[7-9];基于通信的保护则应用大量的传感器和通信设备[10-11],增加了系统的复杂性和成本[12-13]。文献[14]首次提出将限流手段与直流保护相融合的控保协同思想,并将此思想应用于环形直流微网测距式保护,通过对端电流的精确求解实现单端精准故障定位,但该方案仅适用于环形直流微网。文献[15]在文献[14]的基础上将控保协同方案按执行时间先后顺序分为了故障控制、故障定位以及故障隔离3个阶段,通过对各支路换流器进行改造,使其故障电流得到有效的抑制,为后续配置低压直流微网故障隔离方案提供应用基础,但该文献缺少系统性的保护整定值设置原则,适用范围并不明确。文献[16]基于控保协同思想提出一种海底观测网供电系统保护方案并详细介绍了各支路的保护整定值配置原则,但不适用于直流微网。

      综上所述,将控保协同思想应用于直流微网保护吸引了众多学者的目光,但对于限流效果的要求以及如何与保护配合仍缺乏系统的论证。文章在现有的限流技术基础上,提出一种与故障限流相融合的过流保护方法,通过故障电流控制目标与过流保护的整定值相协同来实现极差配合,使得传统三段式过流保护可以很好地应用于直流微网的保护。

    • 过流保护具备简单、可靠的优点,在一般情况下能满足快速切除故障的要求,广泛应用在35 kV及以下的中低压交流配电系统中。

      典型的阶段式电流保护的配合和实际动作时间如图1所示。对于电网最末端的负荷,保护1一般采用瞬时速断保护即可满足保护要求,其整定值按躲过最大运行方式下的负荷电流设置,电网中的其他保护,在定值和时限上需要与保护1配合,可增设限时电流速断保护[17-18]。当越靠近电源端,过电流幅值越大,过流保护的动作时限越长,因此靠近电源端的保护一般需要装设三段式保护。

      Figure 1.  Coordination and actual operation time of stage current protection

    • 对于图2所示的典型直流微网,该网络中电源模块包括交直流接入模块、光伏发电模块、风力发电模块、储能模块,负荷模块包括充电桩和纯阻性负荷。以充电桩支路发生短路故障为例进行分析,故障前后各支路电流如图3所示。

      Figure 2.  Typical DC microgrid charging station branch fault

      Figure 3.  Current waveform of each branch under branch fault of DC microgrid Charging station

      可见,直流微网在发生极间故障瞬间,会产生极大的冲击电流;由于电源端多,并且线路短,阻抗小,故障电流上升速度快,故障后5 ms内即有多条支路上升至正常运行时的10倍以上。因此,对于直流微网,若仍然采用上节所述的过流保护,将难以实现极差配合,导致选择保护性较差。

    • 目前故障电流控制技术主要分为两类,一类是通过合理的系统设计和配置,能够在故障发生时,使得故障电流在可接受的范围内;另一类则是在故障发生后,通过一些设备或技术手段,精确控制故障电流的大小。为方便保护整定值的设定,文章推荐采用故障电流控制技术,精准控制各个分布式电源支路提供的故障电流。考虑到各分布式电源一般都采用电力电子装置实现故障电流控制,因此,文章设定各支路故障电流控制目标不大于2 pu。

    • 对于含有多个电源支路的直流微网,故障支路流过的故障电流由多个电源共同提供,必定会大于任意单一支路的故障电流控制值。因此,各支路的Ⅰ段保护整定值设置为2 pu或略小,大于故障电流控制值,小于支路中电力电子装置闭锁保护值即可。当母线侧故障时,流过各支路断路器的故障电流均为支路电流,可见此时各支路电流Ⅰ段保护不会动作。为此,对于电源支路,可设定Ⅱ段保护整定值略小于支路故障电流控制值,使得母线侧故障时,各电源支路均可以通过Ⅱ段保护跳闸。对于Ⅲ段保护,可借鉴交流配电网,整定值设置为略大于正常运行的最大负荷电流。

    • 上述整定方法可实现大多数直流微网的保护整定,但仍有一些特殊情况需要特别考虑,比如仅含有两个电源的情况,以及其中一个电源容量特别大的情况。

      1) 仅含有两个电源的情况

      当直流微网只存在两个电压源时,如图4所示。若电源2容量大于电源1容量,当电源2支路发生短路故障,流过断路器k2的电流由电源1所提供,小于断路器k2的Ⅰ段保护整定值,也可能小于其Ⅱ段保护值,导致k2不跳而k1的Ⅱ段保护跳闸,使得保护失去选择性。为避免这种情况发生,在直流微网设计中,可利用电源出口处断路器跳开电源2。但故障依然不能切除,电源1的Ⅱ段保护依然会跳闸。 若电源2出口处断路器与断路器k2实现联动,则可切除故障,确保电源1不会被切除,这同时也要求电源2的二段整定时延小于电源1的二段整定时延。当电源1支路故障时,断路器k1流过电源2提供的故障电流,断路器k1的Ⅰ段保护动作跳闸。

      Figure 4.  High capacity power supply terminal failure situation

      2)其中某个电源容量特别大的情况

      图5为多电源直流微网中容量最大电源(电源1)支路故障,此时断路器k1上流过的电流由电源2与电源3提供。若电源1容量远远大于电源2与电源3容量之和,则会出现流过k1的电流无法达到该支路瞬时保护整定值,无法准确实现故障定位。因此,在直流微网设计中,应避免其中一个电源的容量大于其他电源容量之和。

      Figure 5.  Maximum capacity power supply terminal failure situation

    • 文章采用电力暂态仿真软件PSCAD/EMTDC,对图6所示的典型多电源直流微网进行建模仿真分析,系统参数如表1所示。仿真中采用故障电流自主控制技术 [19-20],使各支路电源在短路故障下所输出的故障电流略小于2 pu。由于光伏发电模块可等效为电流源,在不增加限流的情况下,所输出的故障电流较小,对系统影响较小,不需要对此支路进行限流。仿真中采用机械式断路器,分断时间为20 ms,各支路额定电流如表2所示。

      Figure 6.  ypical multi power DC microgrid structure

      系统系统参量数值
      母线 额定电压/V 750
      交直流接入系统 系统容量/kW 500
      光伏发电系统 系统容量/kW 150
      风力发电系统 系统容量/kW 300
      储能系统 系统容量/kW 200
      充电桩 额定功率/kW 200
      直流负荷1、2 额定功率/kW 300

      Table 1.  Typical parameters of DC microgrid systems with multiple power sources

      断路器I/kA
      K10.667
      K20.200
      K30.400
      K40.267
      K50.267
      K6、K70.400

      Table 2.  Rated current of each branch

      结合表2,设置各电源支路的故障电流控制目标不大于2 pu。仿真中设置交流电源支路故障电流控制目标为1.1 kA,风力发电支路故障电流控制目标为0.7 kA,储能电池支路故障电流控制目标为0.45 kA。

      根据2.2节中的保护配合原则,设置各电源支路的I段保护整定值略小于2 pu,且大于故障电流控制目标值;Ⅱ段保护整定值略小于支路故障电流控制值;Ⅲ段保护整定值略大于正常运行的最大负荷电流;设置各负荷支路I段保护整定值为2倍额定电流,Ⅱ段保护整定值为1.5倍额定电流,Ⅲ段保护整定值为1.1倍额定电流;光伏发电支路等同于负荷支路处理。直流微网各支路的保护整定值如表3所示,其中K1为交直流接入系统支路断路器,K2为光伏发电系统支路断路器,K3为风力发电系统支路断路器,K4为储能系统支路断路器,K5为充电桩支路断路器,K6、K7为直流负荷支路断路器。

      断路器Ⅲ段(100 ms)Ⅱ段(30 ms)Ⅰ段
      K10.731.001.30
      K20.220.300.40
      K30.440.600.80
      K40.290.400.53
      K50.290.400.53
      K6、K70.440.600.80

      Table 3.  Typical setting values for protection of each branch of dual power supply DC microgrid kA

      文章以典型支路故障为例,对图5中交流接入支路故障f1、储能支路故障f2、充电桩支路故障f3和母线故障f4进行仿真验证,设置故障发生时刻为500 ms。图7为不同故障下各支路电流变化情况。

      Figure 7.  Current waveform of each branch under different faults

      根据仿真结果可知,f1处故障时,K1在故障发生后0.1 ms达到Ⅰ段保护整定值,随后迅速切断,其他支路断路器不动作;f2处故障时,K4在故障发生后0.1 ms达到Ⅰ段保护整定值,随后迅速切断,K2在故障后0.2 ms触发Ⅰ段保护,随着电流的下降,保护返回,其他支路断路器不动作;f3处故障时,K5在故障发生后0.1 ms达到Ⅰ段保护整定值,随后迅速切断,K2在故障后0.3 ms触发Ⅰ段保护,随着电流的下降,保护返回,其他支路断路器不动作。

      母线故障时,K1在故障发生后5.9 ms达到Ⅱ段保护整定值,在故障后35.9 ms断开;由于流过K2电流会短时间内上升,会触发Ⅰ段保护,随着电流迅速下降,保护返回,K2在故障后102.7 ms后由Ⅲ段保护断开;K3在故障发生后3.2 ms达到Ⅱ段保护整定值,在故障后33.2 ms断开;随着故障初始时刻电流短时刻上升,K4触发Ⅰ段保护,随后保护返回,在故障后31 ms断开,K5、K6、K7不动作。

      综上,短路故障发生时,采用与限流结合的过流保护方法,在支路故障下能迅速判断故障点并切除,故障切除后系统能迅速恢复并正常运行;在母线故障下,光伏发电支路断路器经长延时断开,其他电源支路断路器经短延时断开。

    • 文章根据直流微网的故障电流特性,分析了传统的过流保护难以直接应用于直流微网的原因,提出了基于故障电流控制的过电流保护方法,通过与故障电流控制值相配合的方法,设定过电流保护的整定值,从而实现极差配合,使得过电流保护在直流微网中具备良好的选择性。在故障电流精确控制的前提下,保护整定原则如下:

      1)电压源支路:I段保护整定值略小于2 pu,且大于故障电流控制目标值;Ⅱ段保护整定值略小于支路故障电流控制值;Ⅲ段保护整定值略大于正常运行的最大负荷电流。

      2)负荷支路:I段保护整定值为2倍额定电流,Ⅱ段保护整定值为1.5倍额定电流,Ⅲ段保护整定值为1.1倍额定电流。

      3)建议在微网设计过程对各电源的容量配置进行一定的考虑,避免特殊情况的发生。

      文章用仿真分析的方法验证了所提保护方法的有效性,研究成果可为工程设计提供一定的参考。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return