• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 10 Issue 5
Sep.  2023
Turn off MathJax
Article Contents

LIU Yu, WANG Wen. Research on the Interaction Between Multi-Circuit Shared HVDC Grounding Electrodes[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 87-93. doi: 10.16516/j.gedi.issn2095-8676.2023.05.012
Citation: LIU Yu, WANG Wen. Research on the Interaction Between Multi-Circuit Shared HVDC Grounding Electrodes[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 87-93. doi: 10.16516/j.gedi.issn2095-8676.2023.05.012

Research on the Interaction Between Multi-Circuit Shared HVDC Grounding Electrodes

doi: 10.16516/j.gedi.issn2095-8676.2023.05.012
  • Received Date: 2023-04-04
  • Rev Recd Date: 2023-06-12
  • Available Online: 2023-08-25
  • Publish Date: 2023-09-10
  •   Introduction  Unlike the independent grounding electrode, shared earth electrode is connected to multiple DC (Direct Current) systems, and its parameters and operation mode need to be determined by each system connected to it. There are mutual influences between systems, and various factors need to be considered comprehensively during design.   Method  By using CDEGS, the mutual influence factors and laws between the two grounding electrodes were analyzed, especially the mutual influence between the deep well grounding electrode and the vertical grounding electrode. Then the influence on the step potential with the same polarity operation and different polarity operation when multiple grounding electrodes operate and share at the same time in the actual scenario was studied.   Result  The simulation results show that the degree of interaction between grounding electrodes changes with the change of soil resistivity characteristics and the distance between electrodes. The influence of deep well grounding electrode on vertical grounding electrode is different from that of vertical grounding electrode.   Conclusion  The general law of interaction between vertical grounding electrode and deep-well grounding electrode is studied in this paper, which can provide theoretical and technical support for the scheme of shared grounding electrode, and opens up new ideas for the design of grounding electrode in the future.
  • [1] 陈伟, 李少东, 孙勇, 等. 垂直型直流接地极埋深的优化配置研究 [J]. 电瓷避雷器, 2020(2): 56-63. DOI:  10.16188/j.isa.1003-8337.2020.02.010.

    CHEN W, LI S D, SUN Y, et al. Study on the optimal configuration of buried depth of vertical DC grounding electrodes [J]. Insulators and surge arresters, 2020(2): 56-63. DOI:  10.16188/j.isa.1003-8337.2020.02.010.
    [2] 梁旭明, 张平, 常勇. 高压直流输电技术现状及发展前景 [J]. 电网技术, 2012, 36(4): 1-9. DOI:  10.13335/j.1000-3673.pst.2012.04.024.

    LIANG X M, ZHANG P, CHANG Y. Recent advances in high-voltage direct-current power transmission and its developing potential [J]. Power system technology, 2012, 36(4): 1-9. DOI:  10.13335/j.1000-3673.pst.2012.04.024.
    [3] 曾富, 樊艳芳, 耿山. 特高压直流接地极优化选址研究 [J]. 高压电器, 2020, 56(10): 205-211. DOI:  10.13296/j.1001-1609.hva.2020.10.032.

    ZENG F, FAN Y F, GENG S. Research on optimal location of UHVDC grounding electrode [J]. High voltage apparatus, 2020, 56(10): 205-211. DOI:  10.13296/j.1001-1609.hva.2020.10.032.
    [4] 饶宏, 李岩, 黎小林, 等. 4个直流输电工程共用1个接地极运行方式的研究 [J]. 高电压技术, 2012, 38(5): 1179-1185.

    RAO H, LI Y, LI X L, et al. Study on four HVDC systems sharing a common ground electrode [J]. High voltage engineering, 2012, 38(5): 1179-1185.
    [5] 黄成, 孙帮新, 王彦峰. 共用接地极技术在云广特高压和贵广Ⅱ超高压直流输电工程中的应用 [J]. 广东输电与变电技术, 2007(5): 18-20,36. DOI:  10.3969/j.issn.1672-6324.2007.05.005.

    HUANG C, SUN B X, WANG Y F. The application of common grounding electrode technique in Yun-Guang ultra HVDC and Gui-Guang Ⅱ HVDC projects [J]. Guangdong power transmission technology, 2007(5): 18-20,36. DOI:  10.3969/j.issn.1672-6324.2007.05.005.
    [6] 陈俊宇, 张卓杰. 南方电网直流工程共用接地极的风险及影响分析 [J]. 电工电气, 2021(11): 19-22,29. DOI:  10.3969/j.issn.1007-3175.2021.11.004.

    CHEN J Y, ZHANG Z J. Analysis on the risks and impact of common grounding electrodes in the DC project of China southern power grid [J]. Electrotechnics electric, 2021(11): 19-22,29. DOI:  10.3969/j.issn.1007-3175.2021.11.004.
    [7] 任斌, 李嗣, 金哲, 等. ±500 kV直流输电系统共用接地极极址检修方式研究 [J]. 电工技术, 2018(8): 56-58. DOI:  10.3969/j.issn.1002-1388.2018.08.023.

    REN B, LI S, JIN Z, et al. Research on maintenance mode for common earth electrode site in ±500 kV DC transmission system [J]. Electric engineering, 2018(8): 56-58. DOI:  10.3969/j.issn.1002-1388.2018.08.023.
    [8] 李瑞显, 胡上茂, 罗炜, 等. 鱼龙岭共用接地极线路检修对换流站内变压器及人身安全的影响 [J]. 南方电网技术, 2019, 13(7): 58-63. DOI:  10.13648/j.cnki.issn1674-0629.2019.07.008.

    LI R X, HU S M, LUO W, et al. Influence of Yulongling common grounding electrode line maintenance on transformers and personal safety in converter station [J]. Southern power system technology, 2019, 13(7): 58-63. DOI:  10.13648/j.cnki.issn1674-0629.2019.07.008.
    [9] 曾连生. 金沙江一期UHVDC工程三换流站共用接地极的研究 [J]. 电力建设, 2007, 28(9): 8-12. DOI:  10.3969/j.issn.1000-7229.2007.09.003.

    ZENG L S. Research on common earth electrode by three converter stations in Jinsha River UHVDC phase I project [J]. Electric power construction, 2007, 28(9): 8-12. DOI:  10.3969/j.issn.1000-7229.2007.09.003.
    [10] 李坤泉, 李瑞芳, 杜浩, 等. 超高压直流输电线路共用接地极电气特性研究 [J]. 电工技术, 2021(16): 124-128. DOI:  10.19768/j.cnki.dgjs.2021.16.044.

    LI K Q, LI R F, DU H, et al. Research on characteristics of common grounding electrode in EHVDC transmission lines [J]. Electric engineering, 2021(16): 124-128. DOI:  10.19768/j.cnki.dgjs.2021.16.044.
    [11] 王蒙, 陈浩. 同塔双回直流共用接地极对单极金属与单极大地回线方式转换影响研究 [J]. 电力与能源, 2016, 37(4): 438-441.

    WANG M, CHEN H. Effects of shared grounding electrode with double circuit lines on the same tower on the conversion between unipolar metal loop and unipolar earth loop [J]. Power & energy, 2016, 37(4): 438-441.
    [12] 张涛, 谈小瑞, 黄悦华. 特高压直流共用接地极的暂态温升分析 [J]. 高电压技术, 2015, 41(11): 3672-3678. DOI:  10.13336/j.1003-6520.hve.2015.11.021.

    ZHANG T, TAN X R, HUANG Y H. Analysis on transient temperature rise of UHVDC common grounding electrode [J]. High voltage engineering, 2015, 41(11): 3672-3678. DOI:  10.13336/j.1003-6520.hve.2015.11.021.
    [13] 孙冰, 罗忠游, 于永军, 等. ± 1100 kV昌吉换流站与±800 kV天山换流站共同作用的直流偏磁问题研究 [J]. 高压电器, 2020, 56(8): 121-127. DOI:  10.13296/j.1001-1609.hva.2020.08.019.

    SUN B, LUO Z Y, YU Y J, et al. Study on the DC magnetic bias of the ± 1100 kV Changji converter station and the ±800 kV Tianshan converter station [J]. High voltage apparatus, 2020, 56(8): 121-127. DOI:  10.13296/j.1001-1609.hva.2020.08.019.
    [14] 陈颖. 水电站接地网暂态特性及其评估技术研究 [D]. 成都: 西南交通大学, 2017.

    CHEN Y. Study on transient characteristics and evaluation technology of grounding grid of hydropower station [D]. Chengdu: Southwest Jiaotong University, 2017.
    [15] 张振军. 用冲击电流法测量接地网阻抗系统的设计 [D]. 成都: 西华大学, 2008.

    ZHANG Z J. Impact of current measurement by grounding impedance network system design [D]. Chengdu: Xihua University, 2008.
    [16] 张富春, 郭婷, 黎晓辰, 等. ±800 kV与±500 kV换流站共用接地极时入地电流对极址附近电位分布的影响 [J]. 电力建设, 2014, 35(7): 115-120. DOI:  10.3969/j.issn.1000-7229.2014.07.020.

    ZHANG F C, GUO T, LI X C, et al. Influence of ground-return current of ±800 kV and ±500 kV converter stations sharing a common grounding electrode on potential distribution [J]. Electric power construction, 2014, 35(7): 115-120. DOI:  10.3969/j.issn.1000-7229.2014.07.020.
    [17] 孔志达. 独立接地极改造为共用接地极方案研究 [J]. 南方能源建设, 2015, 2(3): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.022.

    KONG Z D. Research on the plan of independent earth electrode reconstructed to common earth electrode [J]. Southern energy construction, 2015, 2(3): 112-117. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.022.
    [18] 徐攀腾, 朱博, 喻文翔, 等. 乌东德与滇西北共用接地极线对直流输电系统影响研究 [J]. 电工技术, 2022(7): 49-53. DOI:  10.19768/j.cnki.dgjs.2022.07.014.

    XU P T, ZHU B, YU W X, et al. Research on the influence of the common ground electrode line between Wudongde and northwest Yunnan on the HVDC transmission system [J]. Electric engineering, 2022(7): 49-53. DOI:  10.19768/j.cnki.dgjs.2022.07.014.
    [19] 熊奇, 王沐雪, 黄浩, 等. 复杂地质情况下接地极土壤模型建立及研究 [J]. 中国电机工程学报, 2020, 40(7): 2269-2277. DOI:  10.13334/j.0258-8013.pcsee.182115.

    XIONG Q, WANG M X, HUANG H, et al. Establishment of earth model for HVDC earth electrode in complicated terrain [J]. Proceedings of the CSEE, 2020, 40(7): 2269-2277. DOI:  10.13334/j.0258-8013.pcsee.182115.
    [20] 卢毓欣, 赵晓斌, 李岩, 等. 共用接地极直流输电工程运行方式转换过程中换流站地网分流的影响及解决方案 [J]. 南方电网技术, 2022, 16(2): 103-110. DOI:  10.13648/j.cnki.issn1674-0629.2022.02.014.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(1)  / Tables(8)

Article Metrics

Article views(230) PDF downloads(31) Cited by()

Related

Research on the Interaction Between Multi-Circuit Shared HVDC Grounding Electrodes

doi: 10.16516/j.gedi.issn2095-8676.2023.05.012

Abstract:   Introduction  Unlike the independent grounding electrode, shared earth electrode is connected to multiple DC (Direct Current) systems, and its parameters and operation mode need to be determined by each system connected to it. There are mutual influences between systems, and various factors need to be considered comprehensively during design.   Method  By using CDEGS, the mutual influence factors and laws between the two grounding electrodes were analyzed, especially the mutual influence between the deep well grounding electrode and the vertical grounding electrode. Then the influence on the step potential with the same polarity operation and different polarity operation when multiple grounding electrodes operate and share at the same time in the actual scenario was studied.   Result  The simulation results show that the degree of interaction between grounding electrodes changes with the change of soil resistivity characteristics and the distance between electrodes. The influence of deep well grounding electrode on vertical grounding electrode is different from that of vertical grounding electrode.   Conclusion  The general law of interaction between vertical grounding electrode and deep-well grounding electrode is studied in this paper, which can provide theoretical and technical support for the scheme of shared grounding electrode, and opens up new ideas for the design of grounding electrode in the future.

LIU Yu, WANG Wen. Research on the Interaction Between Multi-Circuit Shared HVDC Grounding Electrodes[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 87-93. doi: 10.16516/j.gedi.issn2095-8676.2023.05.012
Citation: LIU Yu, WANG Wen. Research on the Interaction Between Multi-Circuit Shared HVDC Grounding Electrodes[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 87-93. doi: 10.16516/j.gedi.issn2095-8676.2023.05.012
    • 接地极作为直流输电系统的重要组成部分,是直流系统安全运行的关键[1]。近年来随着直流输电工程的不断建设,系统容量不断增大,入地电流越来越大,接地极需要的占地面积也越来越大[2]。随着城市建设,接地极可选极址越来越少,这个问题在发达地区如广东地区尤为明显[3-4]。采用共用接地极,能节省极址占地面积,减少工程造价,已在部分直流工程中应用。云广特高压直流与贵广Ⅱ直流系统在受端共用一个接地极[5-6]。±800 kV楚穗直流和±500 kV兴安直流换流站广东境内的接地极址在鱼龙岭共用[7-8]

      接地极根据布置形式可分为水平接地极和垂直接地极。水平接地极是应用最广泛的接地极形式,在极址地势起伏较大的地区可采用垂直接地极,而深井接地极是电极长度达几百上千米的垂直接地极。共用接地极除能节省占地外,还能保证直流系统运行安全可靠。因为在这种情况下,系统有多种灵活的运行方式,同时对直流系统而言,接地极的数量减少,意味着对周边环境可能产生影响的直流源减少,具有显著的经济效益和社会效益[9]。另外,在多个直流系统采用共用接地极在异极性运行时,经接地极流入大地的电流可以相互抵消,减少直流电流入地对交流系统以及周边环境的影响[10-11]。然而,和单独接地极不同,共用接地极为多个直流系统连接,其参数和运行方式由其相连的各个系统决定,系统之间存在相互影响,设计时需要全方位考虑各种因素[12-13]

      文章结合深井型接地极方案,采用CDEGS工具,仿真计算研究垂直接地极和深井型接地极之间相互影响的一般规律,为共用接地极方案提供理论和技术支持,为今后高压直流接地极的设计工作打开新的思路。

    • 一个完整的接地极通常由多个相同的接地导体构成,电流经过导体散流时,散流情况会受周围导体影响。由于屏蔽效应的作用,在接地装置内部增加接地导体,当导体尺寸相比于接地装置小得多时,降阻效果很微弱[14]。理论上来说,当接地导体之间的距离无限大时,导体之间才没有相互作用[15]。也正是因为屏蔽效应,每个接地导体的散流大小和范围都会比导体单独运行时减小[16]

      为进一步研究垂直接地极和深井接地极相互之间的影响因素,文章通过2根垂直接地极和1根垂直+1根深井接地极两个算例分析。

      首先研究2根长35 m的垂直接地极在其独立运行和同时运行时,导体电位受土壤电阻率和接地极间距离的影响。引入影响因素k来表示接地极同时运行与独立运行时导体电位变化比,作为反映两个接地极同时运行的相互干扰的指标,如表1所示。

      土壤电阻率/
      (Ω·m)
      导体电位及影响因素
      1根接地极独立运行/
      V
      2根接地极同极性运行/
      V
      影响因素k/%2根接地极异极性运行/
      V
      影响因素k/%
      5010115553.4747−53.47
      20040361853.35187−53.60
      5001006154553.58466−53.68
      10002011309053.65931−53.70
      注:注入电流为100 A,电极间距离为5 m,垂直电极长度为35 m。

      Table 1.  Effect of soil resistivity on the potential of electrode conductor under uniform soil model

      假定土壤均匀的情况下,由于导体间的屏蔽效应,同极性运行时,导体电位相比于独立运行增大,异极性运行时,导体电位相比于独立运行减小,且该影响因子不随土壤电阻率的变化而变化。

      假定土壤均匀的情况下,随着电极间距增大,屏蔽效应减弱,并且距离越大,屏蔽效应减弱的速度越慢,如表2所示。

      接地极间
      距离/m
      导体电位
      1根接地极
      独立运行/V
      2根接地极
      同极性运行/V
      2根接地极
      异极性运行/V
      510115547
      1010114061.8
      1510113269.7
      2010112774.7
      3010112180.9
      4010111784.7
      注:注入电流为100 A,土壤电阻率为50 Ω·m,垂直电极长度为35 m。

      Table 2.  Effect of electrode spacing on the potential of electrode conductor under uniform soil model

      假定土壤为水平两层的情况下,同极性运行时的导体电位大于独立运行,异极性运行时的导体电位小于独立运行;下层土壤电阻率变化对导体电位的影响更大,如表3所示。

      土壤电阻率/(Ω·m)导体电位及影响因素
      1根接地极独立运行/V2根接地极同极性运行/V影响因素k/%2根接地极异极性运行/V影响因素k/%
      50(0~4 m)/100(4 m~∞)19229151.5692.4−51.88
      50(0~4 m)/1000(4 m~∞)17052 49246.16916−46.28
      100(0~4 m)/50(4 m~∞)99.315253.0746.6−53.07
      1000(0~4m)/50(4 m~∞)10115553.4746.7−53.76
      注:注入电流100 A,电极间距离5 m,垂直电极长度35 m。

      Table 3.  Influence of soil resistivity on the potential of electrode conductor under the horizontal two-layer soil model

      2根深井接地极间的相互影响规律和2根垂直接地极类似。

    • 本节研究1根长35 m的垂直接地极和1根长1 km的深井接地极在其独立运行和同时运行时,导体电位受土壤电阻率和接地极间距离的影响。

      表4可知,假定土壤均匀情况下,由于导体间的屏蔽效应,同极性运行时,导体电位相比于独立运行增大,异极性运行时,导体电位相比于独立运行减小;深井接地极对垂直接地极的影响随着土壤电阻率增大而减小,垂直接地极对深井接地极的影响随着土壤电阻率增大而增大;垂直接地极对深井接地极的影响大于深井接地极对垂直接地极的影响;深井对垂直接地极的影响小于垂直接地极间的相互影响。

      土壤电
      阻率/
      (Ω·m)
      导体电位及影响因素
      1根垂直接地极
      独立运行/V
      1根深井接地极
      独立运行/V
      同极性运行
      垂直接地极/V
      影响因素k/%同极性运行
      深井接地极/V
      影响因素k/%异极性运行
      垂直接地极/V
      影响因素k/%异极性运行
      深井接地极/V
      影响因素k/%
      501019.51031.9811.217.8999−1.987.8−17.89
      20040234.14091.7440.819.65395−1.7427.3−19.94
      500100583.110221.6999.820.10987−1.7966.4−20.10
      1000200916520441.7419820.001973−1.79131−20.61
      注:注入电流为100 A,电极间距离为50 m。

      Table 4.  Effect of soil resistivity on the potential of electrode conductor under uniform soil model

      表5可知,假定土壤均匀的情况下,无论是同极性还是异极性运行,距离对深井和垂直接地极的导体电位影响非常小。

      垂直与深井接
      地极间距离/m
      导体电位
      1根垂直接地极
      独立运行/V
      1根深井接地极
      独立运行/V
      同极性运行
      垂直接地极/V
      同极性运行
      深井接地极/V
      异极性运行
      垂直接地极/V
      异极性运行
      深井接地极/V
      101019.510311.2997.8
      501019.510311.2997.8
      1001019.510311.299.17.9
      5001019.510210.699.88.4
      10001019.510210.21008.8
      注:注入电流为100 A,土壤电阻率为50 Ω·m。

      Table 5.  Effect of electrode spacing on the potential of electrode conductor under uniform soil model

      表6可知,假定土壤为水平两层的情况下,下层土壤电阻率变化对导体电位的影响更大,特别是对深井接地极的电位;垂直接地极对深井接地极的影响大于深井接地极对垂直接地极的影响;深井对垂直接地极的影响小于垂直接地极间的相互影响。

      土壤电阻率/
      (Ω·m)
      导体电位
      垂直接地极
      独立运行/V
      深井接地极
      独立运行/V
      垂直接地极同
      极性运行/V
      影响因素
      k/%
      深井接地极
      同极性运行/V
      影响因素
      k/%
      垂直接地极
      异极性运行/V
      影响因素
      k/%
      深井接地极异
      极性运行/V
      影响因素
      k/%
      50(0~4 m)/
      100(4 m~∞)
      19817.72011.522118.64194−2.0214.2−19.77
      50(0~4 m)/
      1000(4 m~∞)
      17881641 8171.6219317.681 757−1.73133−18.90
      100(0~4 m)/
      50(4 m~∞)
      1029.51041.9611.217.89100−1.967.7−18.95
      1000(0~4 m)/
      50(4 m~∞)
      1039.51051.9411.318.95101−1.947.7−18.95
      注:注入电流为100 A,电极间距离为50 m。

      Table 6.  Influence of soil resistivity on the potential of electrode conductor under the horizontal two-layer soil model

    • 本章主要研究广东地区四回直流共用接地极方案,及相互影响,对比接地极单独运行和共用下的电气特征,为实际工程提供技术支撑。

      多回共用方案如图1所示,换流站3接入3口深井接地极独立运行,而换流站1、换流站2三回直流共用两个垂直型接地极极环[17-18]

      Figure 1.  Sharing scheme of grounding electrode

      换流站2接地极东南向距离换流站3接地极距离约912 m,采用水平多层的土壤模型,在计算接地极相互影响时,两个不同的接地极土壤模型需要进行一定处理,即等效两个极址电阻率的一个新的水平多层土壤模型[19]。该模型下接地极允许最大跨步电势为11.31 V。

      多个接地极注入同极性电流与异极性电流时,对接地极的影响差异较大[20],文章分别采用CDEGS计算两处接地极同极性运行和异极性运行的组合情况。同时引入影响因素k变量,表示接地极同时运行与独立运行时最大跨步电势与电极电流变化比,作为反映两个接地极同时运行的相互干扰的指标。

      首先分别计算换流站1、换流站2共用两个垂直型接地极极环独立运行,和换流站3采用深井接地极独立运行时的跨步电势,再与换流站1和2共用两个垂直型接地极、换流站3采用深井接地极同时运行时的跨步电势做对比,同极性和异极性计算结果分别见表7表8

      运行工况垂直接地极D/L共用深井接地极独立运行同极性运行情况
      注入电流换流站1+2 6.400 kA/V换流站3 3.821 kA/V换流站1+2 6.400 kA
      换流站3 3.821 kA/V
      变化值/V影响因素k/%
      垂直接地极D/L共用跨步电势8.849.080.242.7
      深井跨步电势1.11.820.7265

      Table 7.  Calculation results under the same polarity of the grounding electrode

      运行工况垂直接地极D/L共用深井接地极独立运行异极性运行情况
      注入电流换流站1+2 6.400 kA/V换流站3 3.821 kA/V换流站1+2 6.400 kA
      换流站3 −3.821 kA/V
      变化值/V影响因素k/%
      垂直接地极D/L共用跨步电势8.849.030.192.1
      深井跨步电势1.12.721.62147

      Table 8.  Calculation results under different polarity of the grounding electrode

      表7表8可知,无论是同极性还是异极性运行,接地极同时运行时均存在相互影响,使得跨步电势相对于独立运行值有差异。

      深井接地极相比于垂直接地极能极大改善跨步电势分布,减小最大跨步电势。

      各种不同的运行工况,其跨步电势均未超出允许值,且有较大裕度,最大跨步电势为9.08 V,出现在同极性运行时垂直接地极D极环端部,异极性运行时最大跨步电势出现在垂直接地极L极环端部。

      深井接地极对垂直接地极D/L最大跨步电势影响在同极性与异极性运行方式下差别不大。垂直接地极D/L对深井接地极最大跨步电势影响在异极性运行方式下较同极性方式大。

      同极性运行时,垂直接地极D/L的跨步电势相比于其独立运行时有所增加,深井接地极的跨步电势相比于其独立运行时也有所增加,这是近距离的接地极间屏蔽效应造成的。深井接地极对垂直接地极D/L最大跨步电势影响为2.7%,垂直接地极D/L对深井接地极最大跨步电势影响为65%。

      异极性运行时,垂直接地极D/L的跨步电势相比于同极性运行时有所降低,深井接地极的跨步电势相比于同极性运行时有所增加,这是由于更多的入地电流通过深井接地极泄流,改善了垂直接地极地表的跨步电势。深井接地极对垂直接地极D/L最大跨步电势影响为2.1%,由于深井引起的地表跨步电势值非常小,垂直接地极D/L对深井接地极最大跨步电势影响为147%。

    • 多个接地极同时运行时,由于导体间的屏蔽效应,其电气特征相比于独立运行有所区别,相互之间存在影响。

      1)同极性运行时,导体电位相比于独立运行增大,异极性运行时,导体电位相比于独立运行减小。同时接地极间的相互影响程度随着土壤电阻率特性、电极间距离的变化而改变。

      2)深井接地极对垂直接地极的影响有别于垂直接地极相互之间的影响。深井接地极的存在使得距离对导体电位影响非常小;下层土壤电阻率变化对导体电位的影响更大;深井对垂直接地极的影响小于垂直接地极间的相互影响。

      3)同极性运行时,无论是垂直接地极还是深井接地极,跨步电势相比于其独立运行时有所增大;异极性运行时,垂直接地极的跨步电势相比于同极性运行时降低,深井接地极的跨步电势相比于同极性运行时增大。

      4)深井接地极对垂直接地极最大跨步电势影响在同极性运行方式下较异极性运行方式大,垂直接地极对深井接地极最大跨步电势影响在异极性运行方式下较同极性运行方式大。

      5)文章共用接地极方案下,深井接地极对垂直接地极最大跨步电势影响在2.1%~2.7%,垂直接地极对深井接地极最大跨步电势影响在65%~147%。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return